adds alt_accounts check and removes NANs from alt_accounts. Prints accounts to output more beautifully.
This commit is contained in:
parent
5d0c41407e
commit
1a19fd407a
146
collect.py
146
collect.py
@ -1,5 +1,5 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
'''
|
"""
|
||||||
Created on Thu Jun 8 01:08:21 2023
|
Created on Thu Jun 8 01:08:21 2023
|
||||||
|
|
||||||
@author: Michael
|
@author: Michael
|
||||||
@ -50,7 +50,7 @@ sliced in 6 time periods (to bypass twitters limitations). It will check whether
|
|||||||
a tweet contains any of the keywords in 'data/keywords.txt' and add an indicator
|
a tweet contains any of the keywords in 'data/keywords.txt' and add an indicator
|
||||||
in the datafile. It will then join all slices and create 'ALL-SENATORS.csv'
|
in the datafile. It will then join all slices and create 'ALL-SENATORS.csv'
|
||||||
which is the final output.
|
which is the final output.
|
||||||
'''
|
"""
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -62,77 +62,76 @@ import concurrent.futures
|
|||||||
|
|
||||||
## Setup directories
|
## Setup directories
|
||||||
# WD Michael
|
# WD Michael
|
||||||
wd = '/home/michael/Documents/PS/Data/collectTweets/'
|
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
||||||
# WD Server
|
# WD Server
|
||||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
||||||
|
|
||||||
# Tweet-datafile output directory
|
# Tweet-datafile output directory
|
||||||
td = 'data/tweets/'
|
td = "data/tweets/"
|
||||||
|
|
||||||
# Name of file that all tweets will be written to
|
# Name of file that all tweets will be written to
|
||||||
file_alltweets = 'ALL-SENATORS-TWEETS.csv'
|
file_alltweets = "ALL-SENATORS-TWEETS.csv"
|
||||||
|
|
||||||
path_to_tweetdfs = wd + td
|
path_to_tweetdfs = wd + td
|
||||||
|
|
||||||
## Define Timespan
|
## Define Timespan
|
||||||
# Format: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
# Format: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
||||||
ts_beg = '2020-01-01T00:00:00Z' # start of scraping
|
ts_beg = "2020-01-01T00:00:00Z" # start of scraping
|
||||||
ts_end = '2023-01-03T00:00:00Z' # end of straping
|
ts_end = "2023-01-03T00:00:00Z" # end of straping
|
||||||
no_slices = 24 # Number of slices / time periods.
|
no_slices = 24 # Number of slices / time periods.
|
||||||
|
|
||||||
# Maximum tweets to be scraped by snscrape. Can be left untouched.
|
# Maximum tweets to be scraped by snscrape. Can be left untouched.
|
||||||
maxTweets = 5000
|
maxTweets = 5000
|
||||||
|
|
||||||
# Name of logfile
|
# Name of logfile
|
||||||
logfile = 'log/log_'
|
logfile = "log/log_"
|
||||||
|
|
||||||
|
|
||||||
## Install snscrape from local git repo to make shure that it fits the used version.
|
## Install snscrape from local git repo to make shure that it fits the used version.
|
||||||
# If snscrape is already installed, uncomment the following lines:
|
# If snscrape is already installed, uncomment the following lines:
|
||||||
'''
|
"""
|
||||||
import subprocess
|
import subprocess
|
||||||
os.chdir('snscrape/')
|
os.chdir('snscrape/')
|
||||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-e', '.'])
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-e', '.'])
|
||||||
os.chdir(wd)
|
os.chdir(wd)
|
||||||
'''
|
"""
|
||||||
|
|
||||||
# Columns for tweet dataframe
|
# Columns for tweet dataframe
|
||||||
tweetDFColumns = [
|
tweetDFColumns = [
|
||||||
'id',
|
"id",
|
||||||
'user.id',
|
"user.id",
|
||||||
'user.username',
|
"user.username",
|
||||||
'user.verified',
|
"user.verified",
|
||||||
'user.created',
|
"user.created",
|
||||||
'user.favouritesCount',
|
"user.favouritesCount",
|
||||||
'user.followersCount',
|
"user.followersCount",
|
||||||
'user.friendsCount',
|
"user.friendsCount",
|
||||||
'user.url',
|
"user.url",
|
||||||
'rawContent',
|
"rawContent",
|
||||||
'renderedContent',
|
"renderedContent",
|
||||||
'cashtags',
|
"cashtags",
|
||||||
'coordinates',
|
"coordinates",
|
||||||
'hashtags',
|
"hashtags",
|
||||||
'inReplyToTweetId',
|
"inReplyToTweetId",
|
||||||
'inReplyToUser',
|
"inReplyToUser",
|
||||||
'media',
|
"media",
|
||||||
'mentionedUsers',
|
"mentionedUsers",
|
||||||
'links',
|
"links",
|
||||||
'place',
|
"place",
|
||||||
'quotedTweet',
|
"quotedTweet",
|
||||||
'retweetedTweet',
|
"retweetedTweet",
|
||||||
'sourceLabel',
|
"sourceLabel",
|
||||||
'sourceUrl',
|
"sourceUrl",
|
||||||
'url',
|
"url",
|
||||||
'date',
|
"date",
|
||||||
'replyCount',
|
"replyCount",
|
||||||
'retweetCount',
|
"retweetCount",
|
||||||
'likeCount',
|
"likeCount",
|
||||||
'quoteCount',
|
"quoteCount",
|
||||||
'conversationId',
|
"conversationId",
|
||||||
'lang',
|
"lang",
|
||||||
'source']
|
"source",
|
||||||
|
]
|
||||||
##
|
|
||||||
|
|
||||||
## Import other files
|
## Import other files
|
||||||
from funs.TimeSlice import *
|
from funs.TimeSlice import *
|
||||||
@ -140,45 +139,50 @@ from funs.ClearDupes import deDupe
|
|||||||
from funs.Scrape import scrapeTweets
|
from funs.Scrape import scrapeTweets
|
||||||
|
|
||||||
# create logfile & log all outputs
|
# create logfile & log all outputs
|
||||||
logfilen = logfile + datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '.txt'
|
logfilen = logfile + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".txt"
|
||||||
logfileErrors = logfile + datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_err' + '.txt'
|
logfileErrors = logfile + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + "_err" + ".txt"
|
||||||
sys.stderr = open(logfileErrors, 'w')
|
sys.stderr = open(logfileErrors, "w")
|
||||||
sys.stdout = open(logfilen, 'w')
|
sys.stdout = open(logfilen, "w")
|
||||||
|
|
||||||
## Create List of time-period-slices
|
## Create List of time-period-slices
|
||||||
time_slices = get_Tslices(ts_beg, ts_end, no_slices)
|
time_slices = get_Tslices(ts_beg, ts_end, no_slices)
|
||||||
# Print slices
|
# Print slices
|
||||||
print('Time-period-slices:')
|
print("Time-period-slices:")
|
||||||
for slice in time_slices:
|
for slice in time_slices:
|
||||||
print(slice['suffix'] + ': ' + slice['beg_time'] + ' - ' + slice['end_time'])
|
print(slice["suffix"] + ": " + slice["beg_time"] + " - " + slice["end_time"])
|
||||||
print('---')
|
print("---")
|
||||||
|
|
||||||
## Keywords
|
## Keywords
|
||||||
keywords = []
|
keywords = []
|
||||||
# Remove duplicate Keywords and save all non-duplicates to 'data/keywords.txt'
|
# Remove duplicate Keywords and save all non-duplicates to 'data/keywords.txt'
|
||||||
deDupe('data/keywords-raw.txt', 'data/keywords.txt')
|
deDupe("data/keywords-raw.txt", "data/keywords.txt")
|
||||||
# Read the keywords from a file
|
# Read the keywords from a file
|
||||||
with open('data/keywords.txt', 'r') as file:
|
with open("data/keywords.txt", "r") as file:
|
||||||
lines = file.readlines()
|
lines = file.readlines()
|
||||||
for line in lines:
|
for line in lines:
|
||||||
keyword = line.strip() # Remove the newline character
|
keyword = line.strip() # Remove the newline character
|
||||||
keywords.append(keyword)
|
keywords.append(keyword)
|
||||||
print('---')
|
print("---")
|
||||||
|
|
||||||
## Senator Accounts
|
## Senator Accounts
|
||||||
# Get accounts & alt-accounts from Senators-Datafile
|
# Get accounts & alt-accounts from Senators-Datafile
|
||||||
accounts = pd.read_csv('data/senators-raw.csv')['twitter_handle'].tolist()
|
accounts = pd.read_csv("data/senators-raw.csv")["twitter_handle"].tolist()
|
||||||
alt_accounts = pd.read_csv('data/senators-raw.csv')['alt_handle'].tolist()
|
alt_accounts = pd.read_csv("data/senators-raw.csv")["alt_handle"].tolist()
|
||||||
print('Accounts to be scraped:')
|
alt_accounts = [x for x in alt_accounts if str(x) != 'nan'] # remove empty alt_accounts fields
|
||||||
print(accounts)
|
accounts.append(alt_accounts)
|
||||||
print(alt_accounts)
|
# Print accounts to be scraped
|
||||||
print('---')
|
print("Accounts to be scraped:")
|
||||||
|
for i, acc in enumerate(accounts): # print 5 accounts per line
|
||||||
|
print(f"{acc:^17}", end = "") # twitter handle max length = 15 chars
|
||||||
|
if i % 5 == 4:
|
||||||
|
print "\n"
|
||||||
|
print("\n---")
|
||||||
|
|
||||||
## Scraping
|
## Scraping
|
||||||
timeStartScrape = datetime.now()
|
timeStartScrape = datetime.now()
|
||||||
print("Starting scraping at:")
|
print("Starting scraping at:")
|
||||||
print(timeStartScrape.strftime('%Y-%m-%d_%H-%M-%S'))
|
print(timeStartScrape.strftime("%Y-%m-%d_%H-%M-%S"))
|
||||||
print('---')
|
print("---")
|
||||||
|
|
||||||
# Iterate over each Twitter account using multiprocessing
|
# Iterate over each Twitter account using multiprocessing
|
||||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
@ -200,12 +204,16 @@ with concurrent.futures.ThreadPoolExecutor() as executor:
|
|||||||
timeEndScrape = datetime.now()
|
timeEndScrape = datetime.now()
|
||||||
print("---")
|
print("---")
|
||||||
print("End of scraping at:")
|
print("End of scraping at:")
|
||||||
print(timeEndScrape.strftime('%Y-%m-%d_%H-%M-%S'))
|
print(timeEndScrape.strftime("%Y-%m-%d_%H-%M-%S"))
|
||||||
|
|
||||||
## Merge CSV-Files to file_alltweets
|
## Merge CSV-Files to file_alltweets.
|
||||||
# fastest way is to save the slices seperately and then add every file to the output instead of using pandas or anything else.
|
# fastest way is to save the slices seperately and then add every file to the output instead of using pandas or anything else.
|
||||||
os.chdir(path_to_tweetdfs)
|
os.chdir(path_to_tweetdfs)
|
||||||
tweetfiles = glob.glob('*.{}'.format('csv')) # get list of all csv files in folder
|
# At first check, whether all slices are present.
|
||||||
|
tweetfiles = glob.glob("*.csv") # get list of all csv files in folder - before: "*.{}".format("csv")
|
||||||
|
for handle
|
||||||
|
for tweetfile in tweetfiles:
|
||||||
|
|
||||||
# check if file_alltweets (previously scraped tweets that have been merged into one file) exists, if it exists, remove from list to not include it in the following merge
|
# check if file_alltweets (previously scraped tweets that have been merged into one file) exists, if it exists, remove from list to not include it in the following merge
|
||||||
if file_alltweets in tweetfiles:
|
if file_alltweets in tweetfiles:
|
||||||
tweetfiles.remove(file_alltweets)
|
tweetfiles.remove(file_alltweets)
|
||||||
@ -225,12 +233,14 @@ os.chdir(wd)
|
|||||||
timeEndMerge = datetime.now()
|
timeEndMerge = datetime.now()
|
||||||
print("---")
|
print("---")
|
||||||
print("End of scraping at:")
|
print("End of scraping at:")
|
||||||
print(timeEndMerge.strftime('%Y-%m-%d_%H-%M-%S'))
|
print(timeEndMerge.strftime("%Y-%m-%d_%H-%M-%S"))
|
||||||
print("---")
|
print("---")
|
||||||
tThours, tTminutes, tTseconds = convertTime(timeEndMerge - timeStartScrape)
|
tThours, tTminutes, tTseconds = convertTime(timeEndMerge - timeStartScrape)
|
||||||
tShours, tSminutes, tSseconds = convertTime(timeEndScrape - timeStartScrape)
|
tShours, tSminutes, tSseconds = convertTime(timeEndScrape - timeStartScrape)
|
||||||
tMhours, tMminutes, tMseconds = convertTime(timeEndMerge - timeEndScrape)
|
tMhours, tMminutes, tMseconds = convertTime(timeEndMerge - timeEndScrape)
|
||||||
print(f"Total execution time: {tThours} hours, {tTminutes} minutes and {tTseconds} seconds")
|
print(
|
||||||
|
f"Total execution time: {tThours} hours, {tTminutes} minutes and {tTseconds} seconds"
|
||||||
|
)
|
||||||
print(f"Scraping time: {tShours} hours, {tSminutes} minutes and {tSseconds} seconds")
|
print(f"Scraping time: {tShours} hours, {tSminutes} minutes and {tSseconds} seconds")
|
||||||
print(f"Time merging: {tMhours} hours, {tMminutes} minutes and {tMseconds} seconds")
|
print(f"Time merging: {tMhours} hours, {tMminutes} minutes and {tMseconds} seconds")
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user