cleans and renames files
This commit is contained in:
parent
4e08cde317
commit
1c6d9d5415
@ -1,113 +0,0 @@
|
|||||||
import re
|
|
||||||
import string
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from datetime import datetime
|
|
||||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
|
||||||
from datasets import load_dataset
|
|
||||||
from transformers.pipelines.pt_utils import KeyDataset
|
|
||||||
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# prepare & define paths
|
|
||||||
# install xformers (pip install xformers) for better performance
|
|
||||||
###################
|
|
||||||
# Setup directories
|
|
||||||
# WD Michael
|
|
||||||
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
|
||||||
# WD Server
|
|
||||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
|
||||||
|
|
||||||
# datafile input directory
|
|
||||||
di = "data/IN/"
|
|
||||||
|
|
||||||
# Tweet-datafile output directory
|
|
||||||
ud = "data/OUT/"
|
|
||||||
|
|
||||||
# Name of file that all senator data will be written to
|
|
||||||
senCSV = "SenatorsTweets-OnlyCov.csv"
|
|
||||||
|
|
||||||
# Name of Classify datafile
|
|
||||||
senCSVClassifiedPrep = "Tweets-Classified-Prep.csv"
|
|
||||||
senCSVClassifiedResult = "Tweets-Classified-Results.csv"
|
|
||||||
|
|
||||||
# don't change this one
|
|
||||||
senCSVPath = wd + ud + senCSV
|
|
||||||
senCSVcClassificationPrepPath = wd + ud + senCSVClassifiedPrep
|
|
||||||
senCSVcClassificationResultPath = wd + ud + senCSVClassifiedResult
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# get datafra,e
|
|
||||||
dfClassify = pd.read_csv(senCSVPath, dtype=(object))
|
|
||||||
|
|
||||||
# dataframe from csv
|
|
||||||
dfClassify['fake'] = False
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# https://huggingface.co/bvrau/covid-twitter-bert-v2-struth
|
|
||||||
# HowTo:
|
|
||||||
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
|
|
||||||
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
|
|
||||||
pipe = pipeline("text-classification", model="bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
|
|
||||||
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
|
|
||||||
|
|
||||||
dfClassify['cleanContent'] = dfClassify['rawContent'].apply(remove_URL)
|
|
||||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_emoji)
|
|
||||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_html)
|
|
||||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_punct)
|
|
||||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(lambda x: x.lower())
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# remove empty rows
|
|
||||||
dfClassify.cleanContent.replace('',np.nan,inplace=True)
|
|
||||||
dfClassify.dropna(subset=['cleanContent'], inplace=True)
|
|
||||||
|
|
||||||
#%%
|
|
||||||
timeStart = datetime.now() # start counting execution time
|
|
||||||
|
|
||||||
max_length = 128
|
|
||||||
dfClassify['input_ids'] = dfClassify['cleanContent'].apply(lambda x: tokenizer(x, max_length=max_length, padding="max_length",)['input_ids'])
|
|
||||||
#train.rename(columns={'target': 'labels'}, inplace=True)
|
|
||||||
#train.head()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
dfClassify.to_csv(senCSVcClassificationPrepPath, encoding='utf-8', columns=['id', 'cleanContent'])
|
|
||||||
|
|
||||||
#%%
|
|
||||||
dataset = load_dataset("csv", data_files=senCSVcClassificationPrepPath)
|
|
||||||
|
|
||||||
# %%from datetime import datetime
|
|
||||||
|
|
||||||
#from tqdm.auto import tqdm
|
|
||||||
#for out in tqdm(pipe(KeyDataset(dataset['train'], "cleanContent"))):
|
|
||||||
# print(out)
|
|
||||||
|
|
||||||
#%%
|
|
||||||
output_labels = []
|
|
||||||
output_score = []
|
|
||||||
for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, truncation="only_first"):
|
|
||||||
output_labels.append(out['label'])
|
|
||||||
output_score.append(out['score'])
|
|
||||||
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
|
||||||
# Exactly the same output as before, but the content are passed
|
|
||||||
# as batches to the model
|
|
||||||
# %%
|
|
||||||
dfClassify['output_label'] = output_labels
|
|
||||||
dfClassify['output_score'] = output_score
|
|
||||||
|
|
||||||
timeEnd = datetime.now()
|
|
||||||
timeTotal = timeEnd - timeStart
|
|
||||||
timePerTweet = timeTotal / 96
|
|
||||||
|
|
||||||
print(f"Total classification execution time: {timeTotal} seconds")
|
|
||||||
print(f"Time per tweet classification: {timePerTweet}")
|
|
||||||
|
|
||||||
# %%
|
|
||||||
dfClassify.to_csv(senCSVcClassificationResultPath, encoding='utf-8')
|
|
||||||
|
|
||||||
# %%
|
|
129
analyze.py
129
analyze.py
@ -1,129 +0,0 @@
|
|||||||
import re
|
|
||||||
import string
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
|
||||||
from datasets import load_dataset
|
|
||||||
from transformers.pipelines.pt_utils import KeyDataset
|
|
||||||
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# prepare
|
|
||||||
# install xformers (pip install xformers) for better performance
|
|
||||||
###################
|
|
||||||
# Setup directories
|
|
||||||
# WD Michael
|
|
||||||
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
|
||||||
# WD Server
|
|
||||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
|
||||||
|
|
||||||
# datafile input directory
|
|
||||||
di = "data/IN/"
|
|
||||||
|
|
||||||
# Tweet-datafile output directory
|
|
||||||
ud = "data/OUT/"
|
|
||||||
|
|
||||||
# Name of file that all senator data will be written to
|
|
||||||
senCSV = "ALL-SENATORS-TWEETS.csv"
|
|
||||||
|
|
||||||
# Name of new datafile generated
|
|
||||||
senCSVc = "Tweets-Stub.csv"
|
|
||||||
|
|
||||||
# Name of pretest files
|
|
||||||
preTestIDsFake = "pretest-tweets_fake.txt"
|
|
||||||
preTestIDsNot = "pretest-tweets_not_fake.txt"
|
|
||||||
|
|
||||||
# Name of pretest datafile
|
|
||||||
senCSVPretest = "Pretest.csv"
|
|
||||||
senCSVPretestPrep = "Pretest-Prep.csv"
|
|
||||||
senCSVPretestResult = "Pretest-Results.csv"
|
|
||||||
|
|
||||||
|
|
||||||
# don't change this one
|
|
||||||
senCSVPath = wd + ud + senCSV
|
|
||||||
senCSVcPath = wd + ud + senCSVc
|
|
||||||
senCSVcPretestPath = wd + ud + senCSVPretest
|
|
||||||
senCSVcPretestPrepPath = wd + ud + senCSVPretestPrep
|
|
||||||
senCSVcPretestResultPath = wd + ud + senCSVPretestResult
|
|
||||||
preTestIDsFakePath = wd + di + preTestIDsFake
|
|
||||||
preTestIDsNotPath = wd + di + preTestIDsNot
|
|
||||||
|
|
||||||
# List of IDs to select
|
|
||||||
# Read the IDs from a file
|
|
||||||
preTestIDsFakeL = []
|
|
||||||
preTestIDsNotL = []
|
|
||||||
with open(preTestIDsFakePath, "r") as file:
|
|
||||||
lines = file.readlines()
|
|
||||||
for line in lines:
|
|
||||||
tid = line.strip() # Remove the newline character
|
|
||||||
preTestIDsFakeL.append(tid)
|
|
||||||
with open(preTestIDsNotPath, "r") as file:
|
|
||||||
lines = file.readlines()
|
|
||||||
for line in lines:
|
|
||||||
tid = line.strip() # Remove the newline character
|
|
||||||
preTestIDsNotL.append(tid)
|
|
||||||
|
|
||||||
# Select rows based on the IDs
|
|
||||||
df = pd.read_csv(senCSVPath, dtype=(object))
|
|
||||||
#%%
|
|
||||||
# Create pretest dataframe
|
|
||||||
dfPreTest = df[df['id'].isin(preTestIDsFakeL)].copy()
|
|
||||||
dfPreTest['fake'] = True
|
|
||||||
dfPreTest = pd.concat([dfPreTest, df[df['id'].isin(preTestIDsNotL)]], ignore_index=True)
|
|
||||||
dfPreTest['fake'] = dfPreTest['fake'].fillna(False)
|
|
||||||
|
|
||||||
#%%
|
|
||||||
# https://huggingface.co/bvrau/covid-twitter-bert-v2-struth
|
|
||||||
# HowTo:
|
|
||||||
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
|
|
||||||
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
|
|
||||||
pipe = pipeline("text-classification", model="bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
|
||||||
|
|
||||||
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
|
|
||||||
|
|
||||||
dfPreTest['cleanContent'] = dfPreTest['rawContent'].apply(remove_URL)
|
|
||||||
dfPreTest['cleanContent'] = dfPreTest['cleanContent'].apply(remove_emoji)
|
|
||||||
dfPreTest['cleanContent'] = dfPreTest['cleanContent'].apply(remove_html)
|
|
||||||
dfPreTest['cleanContent'] = dfPreTest['cleanContent'].apply(remove_punct)
|
|
||||||
dfPreTest['cleanContent'] = dfPreTest['cleanContent'].apply(lambda x: x.lower())
|
|
||||||
|
|
||||||
#%%
|
|
||||||
max_length = 128
|
|
||||||
dfPreTest['input_ids'] = dfPreTest['cleanContent'].apply(lambda x: tokenizer(x, max_length=max_length, padding="max_length",)['input_ids'])
|
|
||||||
#train.rename(columns={'target': 'labels'}, inplace=True)
|
|
||||||
#train.head()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
dfPreTest.to_csv(senCSVcPretestPrepPath, encoding='utf-8', columns=['id', 'cleanContent'])
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
dataset = load_dataset("csv", data_files=senCSVcPretestPrepPath)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
results = pipe(KeyDataset(dataset, "text"))
|
|
||||||
# %%
|
|
||||||
#from tqdm.auto import tqdm
|
|
||||||
#for out in tqdm(pipe(KeyDataset(dataset['train'], "cleanContent"))):
|
|
||||||
# print(out)
|
|
||||||
|
|
||||||
#%%
|
|
||||||
output_labels = []
|
|
||||||
output_score = []
|
|
||||||
for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, truncation="only_first"):
|
|
||||||
output_labels.append(out['label'])
|
|
||||||
output_score.append(out['score'])
|
|
||||||
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
|
||||||
# Exactly the same output as before, but the content are passed
|
|
||||||
# as batches to the model
|
|
||||||
# %%
|
|
||||||
dfPreTest['output_label'] = output_labels
|
|
||||||
dfPreTest['output_score'] = output_score
|
|
||||||
|
|
||||||
# %%
|
|
||||||
dfPreTest.to_csv(senCSVcPretestResultPath, encoding='utf-8')
|
|
||||||
|
|
||||||
# %%
|
|
@ -18,44 +18,43 @@ socialdistancing
|
|||||||
wear a mask
|
wear a mask
|
||||||
lockdown
|
lockdown
|
||||||
covd
|
covd
|
||||||
Coronavirus
|
coronavirus
|
||||||
Koronavirus
|
koronavirus
|
||||||
Corona
|
corona
|
||||||
CDC
|
cdc
|
||||||
Wuhancoronavirus
|
wuhancoronavirus
|
||||||
Wuhanlockdown
|
wuhanlockdown
|
||||||
Ncov
|
ncov
|
||||||
Wuhan
|
wuhan
|
||||||
N95
|
n95
|
||||||
Kungflu
|
kungflu
|
||||||
Epidemic
|
epidemic
|
||||||
outbreak
|
outbreak
|
||||||
Sinophobia
|
sinophobia
|
||||||
China
|
|
||||||
covid-19
|
covid-19
|
||||||
corona virus
|
corona virus
|
||||||
covid
|
covid
|
||||||
covid19
|
covid19
|
||||||
sars-cov-2
|
sars-cov-2
|
||||||
COVIDー19
|
covidー19
|
||||||
COVD
|
covd
|
||||||
pandemic
|
pandemic
|
||||||
coronapocalypse
|
coronapocalypse
|
||||||
canceleverything
|
canceleverything
|
||||||
Coronials
|
coronials
|
||||||
SocialDistancingNow
|
socialdistancingnow
|
||||||
Social Distancing
|
social distancing
|
||||||
SocialDistancing
|
socialdistancing
|
||||||
panicbuy
|
panicbuy
|
||||||
panic buy
|
panic buy
|
||||||
panicbuying
|
panicbuying
|
||||||
panic buying
|
panic buying
|
||||||
14DayQuarantine
|
14dayquarantine
|
||||||
DuringMy14DayQuarantine
|
duringmy14dayquarantine
|
||||||
panic shop
|
panic shop
|
||||||
panic shopping
|
panic shopping
|
||||||
panicshop
|
panicshop
|
||||||
InMyQuarantineSurvivalKit
|
inmyquarantinesurvivalkit
|
||||||
panic-buy
|
panic-buy
|
||||||
panic-shop
|
panic-shop
|
||||||
coronakindness
|
coronakindness
|
||||||
@ -65,7 +64,7 @@ chinesevirus
|
|||||||
stayhomechallenge
|
stayhomechallenge
|
||||||
stay home challenge
|
stay home challenge
|
||||||
sflockdown
|
sflockdown
|
||||||
DontBeASpreader
|
dontbeaspreader
|
||||||
lockdown
|
lockdown
|
||||||
lock down
|
lock down
|
||||||
shelteringinplace
|
shelteringinplace
|
||||||
@ -79,13 +78,13 @@ flatten the curve
|
|||||||
china virus
|
china virus
|
||||||
chinavirus
|
chinavirus
|
||||||
quarentinelife
|
quarentinelife
|
||||||
PPEshortage
|
ppeshortage
|
||||||
saferathome
|
saferathome
|
||||||
stayathome
|
stayathome
|
||||||
stay at home
|
stay at home
|
||||||
stay home
|
stay home
|
||||||
stayhome
|
stayhome
|
||||||
GetMePPE
|
getmeppe
|
||||||
covidiot
|
covidiot
|
||||||
epitwitter
|
epitwitter
|
||||||
pandemie
|
pandemie
|
||||||
@ -93,7 +92,7 @@ wear a mask
|
|||||||
wearamask
|
wearamask
|
||||||
kung flu
|
kung flu
|
||||||
covididiot
|
covididiot
|
||||||
COVID__19
|
covid__19
|
||||||
omicron
|
omicron
|
||||||
variant
|
variant
|
||||||
vaccine
|
vaccine
|
||||||
@ -139,9 +138,7 @@ work from home
|
|||||||
workfromhome
|
workfromhome
|
||||||
working from home
|
working from home
|
||||||
workingfromhome
|
workingfromhome
|
||||||
ppe
|
|
||||||
n95
|
n95
|
||||||
ppe
|
|
||||||
n95
|
n95
|
||||||
covidiots
|
covidiots
|
||||||
covidiots
|
covidiots
|
||||||
|
@ -15,10 +15,8 @@ from sklearn.model_selection import train_test_split # pip install scikit-learn
|
|||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
## Follow these two guides:
|
## Uses snippets from this guide:
|
||||||
# best one https://mccormickml.com/2019/07/22/BERT-fine-tuning/
|
# https://mccormickml.com/2019/07/22/BERT-fine-tuning/
|
||||||
# https://xiangyutang2.github.io/tweet-classification/
|
|
||||||
# https://medium.com/mlearning-ai/fine-tuning-bert-for-tweets-classification-ft-hugging-face-8afebadd5dbf
|
|
||||||
|
|
||||||
###################
|
###################
|
||||||
# Setup directories
|
# Setup directories
|
||||||
|
@ -15,10 +15,8 @@ from sklearn.model_selection import train_test_split # pip install scikit-learn
|
|||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
## Follow these two guides:
|
## Uses snippets from this guide:
|
||||||
# best one https://mccormickml.com/2019/07/22/BERT-fine-tuning/
|
# https://mccormickml.com/2019/07/22/BERT-fine-tuning/
|
||||||
# https://xiangyutang2.github.io/tweet-classification/
|
|
||||||
# https://medium.com/mlearning-ai/fine-tuning-bert-for-tweets-classification-ft-hugging-face-8afebadd5dbf
|
|
||||||
|
|
||||||
###################
|
###################
|
||||||
# Setup directories
|
# Setup directories
|
||||||
@ -65,11 +63,7 @@ seed = 12355
|
|||||||
modCovClassPath = wd + "models/CovClass/"
|
modCovClassPath = wd + "models/CovClass/"
|
||||||
modFakeClassPath = wd + "models/FakeClass/"
|
modFakeClassPath = wd + "models/FakeClass/"
|
||||||
|
|
||||||
model_name = 'digitalepidemiologylab/covid-twitter-bert-v2' # accuracy 69
|
|
||||||
#model_name = 'justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets' #48
|
|
||||||
#model_name = "cardiffnlp/tweet-topic-latest-multi"
|
|
||||||
model_name = "bvrau/covid-twitter-bert-v2-struth"
|
model_name = "bvrau/covid-twitter-bert-v2-struth"
|
||||||
#model_name = "cardiffnlp/roberta-base-tweet-topic-single-all"
|
|
||||||
model_fake_name = 'bvrau/covid-twitter-bert-v2-struth'
|
model_fake_name = 'bvrau/covid-twitter-bert-v2-struth'
|
||||||
|
|
||||||
# More models for fake detection:
|
# More models for fake detection:
|
Loading…
x
Reference in New Issue
Block a user