finishes classification scripts

This commit is contained in:
Michael Beck 2023-08-15 14:51:28 +02:00
parent 8f744a08be
commit 2535683cdc
2 changed files with 10 additions and 16 deletions

View File

@ -1,12 +1,9 @@
import re
import string
import numpy as np
import pandas as pd
from datetime import datetime
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from datasets import load_dataset
from transformers.pipelines.pt_utils import KeyDataset
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
#%%
@ -26,11 +23,11 @@ di = "data/IN/"
ud = "data/OUT/"
# Name of file that all senator data will be written to
senCSV = "SenatorsTweets-OnlyCov.csv"
senCSV = "Tweets-Classified-Topic-Results.csv"
# Name of Classify datafile
senCSVClassifiedPrep = "Tweets-Classified-Topic-Prep.csv"
senCSVClassifiedResult = "Tweets-Classified-Topic-Results.csv"
senCSVClassifiedPrep = "Tweets-Classified-Fake-Prep.csv"
senCSVClassifiedResult = "Tweets-Classified-Fake-Results.csv"
# don't change this one
senCSVPath = wd + ud + senCSV
@ -56,9 +53,9 @@ dfClassify['fake'] = False
# HowTo:
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
pipe = pipeline("text-classification", model="bvrau/covid-twitter-bert-v2-struth")
model = AutoModelForSequenceClassification.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
tokenizer = AutoTokenizer.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
pipe = pipeline("text-classification", model="/home/michael/Documents/PS/Data/collectTweets/models/FakeClass/2023-08-15_14-35-43/")
model = AutoModelForSequenceClassification.from_pretrained("/home/michael/Documents/PS/Data/collectTweets/models/FakeClass/2023-08-15_14-35-43/")
tokenizer = AutoTokenizer.from_pretrained("/home/michael/Documents/PS/Data/collectTweets/models/FakeClass/2023-08-15_14-35-43/")
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
@ -100,8 +97,8 @@ for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, trun
# Exactly the same output as before, but the content are passed
# as batches to the model
# %%
dfClassify['output_label'] = output_labels
dfClassify['output_score'] = output_score
dfClassify['output_label_fake'] = output_labels
dfClassify['output_score_fake'] = output_score
timeEnd = datetime.now()
timeTotal = timeEnd - timeStart

View File

@ -1,12 +1,9 @@
import re
import string
import numpy as np
import pandas as pd
from datetime import datetime
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from datasets import load_dataset
from transformers.pipelines.pt_utils import KeyDataset
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
#%%
@ -99,8 +96,8 @@ for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, trun
# Exactly the same output as before, but the content are passed
# as batches to the model
# %%
dfClassify['output_label'] = output_labels
dfClassify['output_score'] = output_score
dfClassify['output_label_topicCov'] = output_labels
dfClassify['output_score_topicCov'] = output_score
timeEnd = datetime.now()
timeTotal = timeEnd - timeStart