adds both classification scripts. Corrects inclusion of CleanTweets functions.

This commit is contained in:
Michael Beck 2023-08-15 14:23:56 +02:00
parent 7a16526a97
commit 2e067b6a64
2 changed files with 231 additions and 0 deletions

116
ClassificationFake.py Normal file
View File

@ -0,0 +1,116 @@
import re
import string
import numpy as np
import pandas as pd
from datetime import datetime
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from datasets import load_dataset
from transformers.pipelines.pt_utils import KeyDataset
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
#%%
# prepare & define paths
# install xformers (pip install xformers) for better performance
###################
# Setup directories
# WD Michael
wd = "/home/michael/Documents/PS/Data/collectTweets/"
# WD Server
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
# datafile input directory
di = "data/IN/"
# Tweet-datafile output directory
ud = "data/OUT/"
# Name of file that all senator data will be written to
senCSV = "SenatorsTweets-OnlyCov.csv"
# Name of Classify datafile
senCSVClassifiedPrep = "Tweets-Classified-Topic-Prep.csv"
senCSVClassifiedResult = "Tweets-Classified-Topic-Results.csv"
# don't change this one
senCSVPath = wd + ud + senCSV
senCSVcClassificationPrepPath = wd + ud + senCSVClassifiedPrep
senCSVcClassificationResultPath = wd + ud + senCSVClassifiedResult
import sys
funs = wd+"funs"
sys.path.insert(1, funs)
import CleanTweets
#%%
# get datafra,e
dfClassify = pd.read_csv(senCSVPath, dtype=(object))
# dataframe from csv
dfClassify['fake'] = False
#%%
# https://huggingface.co/bvrau/covid-twitter-bert-v2-struth
# HowTo:
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
pipe = pipeline("text-classification", model="bvrau/covid-twitter-bert-v2-struth")
model = AutoModelForSequenceClassification.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
tokenizer = AutoTokenizer.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
dfClassify['cleanContent'] = dfClassify['rawContent'].apply(CleanTweets.preprocess_text)
#%%
# remove empty rows
dfClassify.cleanContent.replace('',np.nan,inplace=True)
dfClassify.dropna(subset=['cleanContent'], inplace=True)
#%%
timeStart = datetime.now() # start counting execution time
max_length = 128
dfClassify['input_ids'] = dfClassify['cleanContent'].apply(lambda x: tokenizer(x, max_length=max_length, padding="max_length",)['input_ids'])
#train.rename(columns={'target': 'labels'}, inplace=True)
#train.head()
# %%
dfClassify.to_csv(senCSVcClassificationPrepPath, encoding='utf-8', columns=['id', 'cleanContent'])
#%%
dataset = load_dataset("csv", data_files=senCSVcClassificationPrepPath)
# %%from datetime import datetime
#from tqdm.auto import tqdm
#for out in tqdm(pipe(KeyDataset(dataset['train'], "cleanContent"))):
# print(out)
#%%
output_labels = []
output_score = []
for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, truncation="only_first"):
output_labels.append(out['label'])
output_score.append(out['score'])
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
# Exactly the same output as before, but the content are passed
# as batches to the model
# %%
dfClassify['output_label'] = output_labels
dfClassify['output_score'] = output_score
timeEnd = datetime.now()
timeTotal = timeEnd - timeStart
timePerTweet = timeTotal / 96
print(f"Total classification execution time: {timeTotal} seconds")
print(f"Time per tweet classification: {timePerTweet}")
# %%
dfClassify.to_csv(senCSVcClassificationResultPath, encoding='utf-8')
# %%

115
ClassificationTopic.py Normal file
View File

@ -0,0 +1,115 @@
import re
import string
import numpy as np
import pandas as pd
from datetime import datetime
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from datasets import load_dataset
from transformers.pipelines.pt_utils import KeyDataset
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
#%%
# prepare & define paths
# install xformers (pip install xformers) for better performance
###################
# Setup directories
# WD Michael
wd = "/home/michael/Documents/PS/Data/collectTweets/"
# WD Server
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
# datafile input directory
di = "data/IN/"
# Tweet-datafile output directory
ud = "data/OUT/"
# Name of file that all senator data will be written to
senCSV = "SenatorsTweets-OnlyCov.csv"
# Name of Classify datafile
senCSVClassifiedPrep = "Tweets-Classified-Topic-Prep.csv"
senCSVClassifiedResult = "Tweets-Classified-Topic-Results.csv"
# don't change this one
senCSVPath = wd + ud + senCSV
senCSVcClassificationPrepPath = wd + ud + senCSVClassifiedPrep
senCSVcClassificationResultPath = wd + ud + senCSVClassifiedResult
import sys
funs = wd+"funs"
sys.path.insert(1, funs)
import CleanTweets
#%%
# get datafra,e
dfClassify = pd.read_csv(senCSVPath, dtype=(object))
# dataframe from csv
dfClassify['fake'] = False
#%%
# https://huggingface.co/bvrau/covid-twitter-bert-v2-struth
# HowTo:
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
pipe = pipeline("text-classification", model="/home/michael/Documents/PS/Data/collectTweets/models/CovClass/2023-08-15_05-56-50/")
model = AutoModelForSequenceClassification.from_pretrained("/home/michael/Documents/PS/Data/collectTweets/models/CovClass/2023-08-15_05-56-50/")
tokenizer = AutoTokenizer.from_pretrained("/home/michael/Documents/PS/Data/collectTweets/models/CovClass/2023-08-15_05-56-50/")
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
dfClassify['cleanContent'] = dfClassify['rawContent'].apply(CleanTweets.preprocess_text)
#%%
# remove empty rows
dfClassify.cleanContent.replace('',np.nan,inplace=True)
dfClassify.dropna(subset=['cleanContent'], inplace=True)
#%%
timeStart = datetime.now() # start counting execution time
max_length = 128
dfClassify['input_ids'] = dfClassify['cleanContent'].apply(lambda x: tokenizer(x, max_length=max_length, padding="max_length",)['input_ids'])
#train.rename(columns={'target': 'labels'}, inplace=True)
#train.head()
# %%
dfClassify.to_csv(senCSVcClassificationPrepPath, encoding='utf-8', columns=['id', 'cleanContent'])
#%%
dataset = load_dataset("csv", data_files=senCSVcClassificationPrepPath)
# %%from datetime import datetime
#from tqdm.auto import tqdm
#for out in tqdm(pipe(KeyDataset(dataset['train'], "cleanContent"))):
# print(out)
#%%
output_labels = []
output_score = []
for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, truncation="only_first"):
output_labels.append(out['label'])
output_score.append(out['score'])
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
# Exactly the same output as before, but the content are passed
# as batches to the model
# %%
dfClassify['output_label'] = output_labels
dfClassify['output_score'] = output_score
timeEnd = datetime.now()
timeTotal = timeEnd - timeStart
timePerTweet = timeTotal / 96
print(f"Total classification execution time: {timeTotal} seconds")
print(f"Time per tweet classification: {timePerTweet}")
# %%
dfClassify.to_csv(senCSVcClassificationResultPath, encoding='utf-8')
# %%