adds multiprocessing to scrape tweets.
This commit is contained in:
parent
c675db9d00
commit
5d0c41407e
73
collect.py
73
collect.py
@ -58,6 +58,7 @@ import glob
|
||||
import time
|
||||
import sys
|
||||
from datetime import datetime
|
||||
import concurrent.futures
|
||||
|
||||
## Setup directories
|
||||
# WD Michael
|
||||
@ -131,10 +132,12 @@ tweetDFColumns = [
|
||||
'lang',
|
||||
'source']
|
||||
|
||||
##
|
||||
|
||||
## Import other files
|
||||
import snscrape.modules.twitter as sntwitter
|
||||
from funs.TimeSlice import *
|
||||
from funs.ClearDupes import deDupe
|
||||
from funs.Scrape import scrapeTweets
|
||||
|
||||
# create logfile & log all outputs
|
||||
logfilen = logfile + datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '.txt'
|
||||
@ -150,7 +153,6 @@ for slice in time_slices:
|
||||
print(slice['suffix'] + ': ' + slice['beg_time'] + ' - ' + slice['end_time'])
|
||||
print('---')
|
||||
|
||||
|
||||
## Keywords
|
||||
keywords = []
|
||||
# Remove duplicate Keywords and save all non-duplicates to 'data/keywords.txt'
|
||||
@ -178,57 +180,24 @@ print("Starting scraping at:")
|
||||
print(timeStartScrape.strftime('%Y-%m-%d_%H-%M-%S'))
|
||||
print('---')
|
||||
|
||||
# Iterate over each Twitter account
|
||||
for handle in accounts:
|
||||
# Iterate over each time slice
|
||||
for slice_data in time_slices:
|
||||
# define slice data variables from time_slices
|
||||
ts_beg = slice_data['beg_time']
|
||||
ts_end = slice_data['end_time']
|
||||
suffix = slice_data['suffix']
|
||||
tweetFileName = "Tweets-{handle}{suffix}.csv"
|
||||
|
||||
# create empty tweetlist that will be filled with tweets of current sen
|
||||
TweetList = []
|
||||
|
||||
# statusmsg
|
||||
print(f'Fetching: {handle:>15}{suffix:<7} - from {ts_beg} to {ts_end}')
|
||||
|
||||
# Snscrape query:
|
||||
query = f'from:{handle} since:{ts_beg} until:{ts_end}'
|
||||
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()):
|
||||
singleTweetList = []
|
||||
if i>maxTweets:
|
||||
break
|
||||
# get tweet vars from tweetDFColumns and append to singleTweetList
|
||||
# which will then be appended to TweetList. TweetList contains all tweets of the current slice.
|
||||
for col in tweetDFColumns:
|
||||
singleTweetList.append(eval(f'tweet.{col}'))
|
||||
TweetList.append(singleTweetList)
|
||||
# Check if no tweets fetched for the current time slice. If there are no tweets, skip to next time_slices loop iteration
|
||||
if len(TweetList) == 0:
|
||||
msg = f'return empty in {handle}{suffix} - from {ts_beg} to {ts_end}'
|
||||
open(file, 'a').close()
|
||||
print(msg)
|
||||
continue
|
||||
|
||||
print(f'{i:<6} tweets scraped for: {handle:>15}{suffix:<7}')
|
||||
|
||||
# convert to dataframe
|
||||
tweet_df = pd.DataFrame(TweetList, columns=tweetDFColumns)
|
||||
|
||||
## Check if tweet-text contains keyword
|
||||
tweet_df['contains_keyword'] = ''
|
||||
tweet_df['contains_keyword'] = (tweet_df['rawContent'].str.findall('|'.join(keywords)).str.join(',').replace('', 'none'))
|
||||
## Save two versions of the dataset, one with all fields and one without dict fields
|
||||
# define filepaths
|
||||
csv_path = td + tweetFileName
|
||||
# save short csv
|
||||
tweet_df.to_csv(csv_path)
|
||||
# sleep 1 second to not get blocked because of excessive requests
|
||||
time.sleep(0.5)
|
||||
# Iterate over each Twitter account using multiprocessing
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
# List to store the scraping tasks
|
||||
tasks = []
|
||||
|
||||
for handle in accounts:
|
||||
# Iterate over each time slice
|
||||
for slice_data in time_slices:
|
||||
# ... code to prepare the slice_data ...
|
||||
|
||||
# Schedule the scraping task
|
||||
task = executor.submit(scrapeTweets, handle, slice_data, keywords, td)
|
||||
tasks.append(task)
|
||||
|
||||
# Wait for all tasks to complete
|
||||
concurrent.futures.wait(tasks)
|
||||
|
||||
timeEndScrape = datetime.now()tweetFileName
|
||||
timeEndScrape = datetime.now()
|
||||
print("---")
|
||||
print("End of scraping at:")
|
||||
print(timeEndScrape.strftime('%Y-%m-%d_%H-%M-%S'))
|
||||
|
@ -6,6 +6,12 @@ Created on Wed Jun 21 13:58:42 2023
|
||||
@author: michael
|
||||
'''
|
||||
def deDupe(inFile, outFile):
|
||||
"""Reads file line by line and removes duplicates. Saves deduplicated lines into another file.
|
||||
|
||||
Args:
|
||||
inFile (string): Path to file that shall be deduplicated.
|
||||
outFile (string): Path to output-file.
|
||||
"""
|
||||
from collections import Counter
|
||||
with open(inFile) as f:
|
||||
lines = f.readlines()
|
||||
|
44
funs/Scrape.py
Normal file
44
funs/Scrape.py
Normal file
@ -0,0 +1,44 @@
|
||||
def scrapeTweets(handle, slice_data, keywords, td, maxTweets = 5000):
|
||||
from datetime import datetime
|
||||
currentTime = datetime.now
|
||||
import snscrape.modules.twitter as sntwitter
|
||||
ts_beg = slice_data['beg_time']
|
||||
ts_end = slice_data['end_time']
|
||||
suffix = slice_data['suffix']
|
||||
tweetDataFilePath = td + "Tweets-{handle}{suffix}.csv"
|
||||
|
||||
# create empty tweetlist that will be filled with tweets of current sen
|
||||
TweetList = []
|
||||
|
||||
# statusmsg
|
||||
print(f'{currentTime:<30} Fetching: {handle:>15}{suffix:<7} - from {ts_beg} to {ts_end}')
|
||||
|
||||
# Snscrape query:
|
||||
query = f'from:{handle} since:{ts_beg} until:{ts_end}'
|
||||
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()):
|
||||
if i>maxTweets:
|
||||
break
|
||||
# get tweet vars from tweetDFColumns and append to singleTweetList
|
||||
# which will then be appended to TweetList. TweetList contains all tweets of the current slice.
|
||||
singleTweetList = [singleTweetList.append(eval(f'tweet.{col}')) for col in tweetDFColumns]
|
||||
TweetList.append(singleTweetList)
|
||||
# Check if no tweets fetched for the current time slice. If there are no tweets, skip to next time_slices loop iteration
|
||||
if TweetList:
|
||||
open(tweetDataFilePath, 'a').close()
|
||||
print(f'return empty in {handle}{suffix} - from {ts_beg} to {ts_end}')
|
||||
return
|
||||
print(f'{i:<6} tweets scraped for: {handle:>15}{suffix:<7}')
|
||||
|
||||
# convert to dataframe
|
||||
tweet_df = pd.DataFrame(TweetList, columns=tweetDFColumns)
|
||||
|
||||
## Check if tweet-text contains keyword
|
||||
tweet_df['contains_keyword'] = ''
|
||||
tweet_df['contains_keyword'] = (tweet_df['rawContent'].str.findall('|'.join(keywords)).str.join(',').replace('', 'none'))
|
||||
## Save two versions of the dataset, one with all fields and one without dict fields
|
||||
# define filepaths
|
||||
csv_path = tweetDataFilePath
|
||||
# save short csv
|
||||
tweet_df.to_csv(csv_path, encoding='utf-8')
|
||||
# sleep 1 second to not get blocked because of excessive requests
|
||||
# time.sleep(0.5)
|
Loading…
x
Reference in New Issue
Block a user