adds classification file. adds removal of empty tweets after transormation for classification preparation
This commit is contained in:
parent
d57b7a31b7
commit
d791e4a293
113
Classification.py
Normal file
113
Classification.py
Normal file
@ -0,0 +1,113 @@
|
||||
import re
|
||||
import string
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
||||
from datasets import load_dataset
|
||||
from transformers.pipelines.pt_utils import KeyDataset
|
||||
from funs.CleanTweets import remove_URL, remove_emoji, remove_html, remove_punct
|
||||
|
||||
|
||||
#%%
|
||||
# prepare & define paths
|
||||
# install xformers (pip install xformers) for better performance
|
||||
###################
|
||||
# Setup directories
|
||||
# WD Michael
|
||||
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
||||
# WD Server
|
||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
||||
|
||||
# datafile input directory
|
||||
di = "data/IN/"
|
||||
|
||||
# Tweet-datafile output directory
|
||||
ud = "data/OUT/"
|
||||
|
||||
# Name of file that all senator data will be written to
|
||||
senCSV = "SenatorsTweets-OnlyCov.csv"
|
||||
|
||||
# Name of Classify datafile
|
||||
senCSVClassifiedPrep = "Tweets-Classified-Prep.csv"
|
||||
senCSVClassifiedResult = "Tweets-Classified-Results.csv"
|
||||
|
||||
# don't change this one
|
||||
senCSVPath = wd + ud + senCSV
|
||||
senCSVcClassificationPrepPath = wd + ud + senCSVClassifiedPrep
|
||||
senCSVcClassificationResultPath = wd + ud + senCSVClassifiedResult
|
||||
|
||||
#%%
|
||||
# get datafra,e
|
||||
dfClassify = pd.read_csv(senCSVPath, dtype=(object))
|
||||
|
||||
# dataframe from csv
|
||||
dfClassify['fake'] = False
|
||||
|
||||
|
||||
#%%
|
||||
# https://huggingface.co/bvrau/covid-twitter-bert-v2-struth
|
||||
# HowTo:
|
||||
# https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForSequenceClassification
|
||||
# https://stackoverflow.com/questions/75932605/getting-the-input-text-from-transformers-pipeline
|
||||
pipe = pipeline("text-classification", model="bvrau/covid-twitter-bert-v2-struth")
|
||||
model = AutoModelForSequenceClassification.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
||||
tokenizer = AutoTokenizer.from_pretrained("bvrau/covid-twitter-bert-v2-struth")
|
||||
|
||||
# Source https://www.kaggle.com/code/daotan/tweet-analysis-with-transformers-bert
|
||||
|
||||
dfClassify['cleanContent'] = dfClassify['rawContent'].apply(remove_URL)
|
||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_emoji)
|
||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_html)
|
||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(remove_punct)
|
||||
dfClassify['cleanContent'] = dfClassify['cleanContent'].apply(lambda x: x.lower())
|
||||
|
||||
#%%
|
||||
# remove empty rows
|
||||
dfClassify.cleanContent.replace('',np.nan,inplace=True)
|
||||
dfClassify.dropna(subset=['cleanContent'], inplace=True)
|
||||
|
||||
#%%
|
||||
timeStart = datetime.now() # start counting execution time
|
||||
|
||||
max_length = 128
|
||||
dfClassify['input_ids'] = dfClassify['cleanContent'].apply(lambda x: tokenizer(x, max_length=max_length, padding="max_length",)['input_ids'])
|
||||
#train.rename(columns={'target': 'labels'}, inplace=True)
|
||||
#train.head()
|
||||
|
||||
# %%
|
||||
dfClassify.to_csv(senCSVcClassificationPrepPath, encoding='utf-8', columns=['id', 'cleanContent'])
|
||||
|
||||
#%%
|
||||
dataset = load_dataset("csv", data_files=senCSVcClassificationPrepPath)
|
||||
|
||||
# %%from datetime import datetime
|
||||
|
||||
#from tqdm.auto import tqdm
|
||||
#for out in tqdm(pipe(KeyDataset(dataset['train'], "cleanContent"))):
|
||||
# print(out)
|
||||
|
||||
#%%
|
||||
output_labels = []
|
||||
output_score = []
|
||||
for out in pipe(KeyDataset(dataset['train'], "cleanContent"), batch_size=8, truncation="only_first"):
|
||||
output_labels.append(out['label'])
|
||||
output_score.append(out['score'])
|
||||
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
||||
# Exactly the same output as before, but the content are passed
|
||||
# as batches to the model
|
||||
# %%
|
||||
dfClassify['output_label'] = output_labels
|
||||
dfClassify['output_score'] = output_score
|
||||
|
||||
timeEnd = datetime.now()
|
||||
timeTotal = timeEnd - timeStart
|
||||
timePerTweet = timeTotal / 96
|
||||
|
||||
print(f"Total classification execution time: {timeTotal} seconds")
|
||||
print(f"Time per tweet classification: {timePerTweet}")
|
||||
|
||||
# %%
|
||||
dfClassify.to_csv(senCSVcClassificationResultPath, encoding='utf-8')
|
||||
|
||||
# %%
|
Loading…
x
Reference in New Issue
Block a user