167 lines
5.0 KiB
Python
167 lines
5.0 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Thu Jun 23 21:49:11 2023
|
|
|
|
@author: Michael
|
|
|
|
collectSenData.py scrapes accounts of senators for the following data:the
|
|
number of followers, the number of users the twitter account is following,
|
|
and how long the twitter account has existed.
|
|
|
|
# Requirements:
|
|
- snscrape 0.6.2.20230321+
|
|
- pandas 2.0+
|
|
# IMPORTANT:
|
|
This script uses snscrape Version 0.6.2.20230321.dev50+g0d824ab which is
|
|
included in 'snscrape/' as a git repository for better reproducibility. Earlier
|
|
versions of snscrape will most likely fail to scrape all tweets because of
|
|
certain rate limits or other errors that may occur.
|
|
Install snscrape from local git repo to make shure that it fits the used version.
|
|
If snscrape is shall be installed from local repo, uncomment the following lines:
|
|
|
|
import subprocess
|
|
os.chdir('snscrape/')
|
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-e', '.'])
|
|
os.chdir(wd)
|
|
|
|
|
|
# How to use:
|
|
"""
|
|
|
|
import os
|
|
import pandas as pd
|
|
import glob
|
|
import time
|
|
import sys
|
|
from datetime import datetime
|
|
import concurrent.futures
|
|
|
|
###################
|
|
# Setup directories
|
|
# WD Michael
|
|
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
|
# WD Server
|
|
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
|
|
|
# datafile input directory
|
|
di = "data/IN/"
|
|
|
|
# Tweet-datafile output directory
|
|
ud = "data/OUT/"
|
|
|
|
# Name of file that all senator data will be written to
|
|
senCSV = "ALL-SENATORS.csv"
|
|
|
|
# don't change this one
|
|
senCSVPath = wd + ud + senCSV
|
|
|
|
# Name of logfile
|
|
logfile = wd+"log/UserLog_"
|
|
|
|
###################
|
|
# Define Timespan & time-format
|
|
# Format: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
|
ts_beg = "2020-01-01T00:00:00Z" # start of scraping
|
|
ts_end = "2023-01-03T00:00:00Z" # end of straping
|
|
no_slices = 24 # Number of slices / time periods.
|
|
|
|
# file time format
|
|
fTimeFormat = "%Y-%m-%d_%H-%M-%S"
|
|
|
|
# Maximum tweets to be scraped by snscrape. Can be left untouched.
|
|
maxTweets = 5000
|
|
|
|
# Columns for tweet dataframe. Parameters for snscrape.modules.twitter.Tweet:
|
|
# https://thetechrobo.ca/snscrape-docs/_autosummary/snscrape.modules.twitter.Tweet.html
|
|
# get subparams just like in user where user id can be obtained by user.id
|
|
userDFColumns = [
|
|
"id",
|
|
"username",
|
|
"followersCount",
|
|
"friendsCount",
|
|
"verified",
|
|
"created"
|
|
]
|
|
|
|
#############################################################################
|
|
################## do NOT change anything below this line ###################
|
|
#############################################################################
|
|
|
|
from funs.Scrape import scrapeUsers, getHandles, printHandles
|
|
from funs.TimeSlice import convertTime
|
|
|
|
|
|
###################
|
|
# Create logfile & log all outputs
|
|
# there are three logfile types to be found in /log.
|
|
# should be self explanatory.
|
|
logfilen = logfile + datetime.now().strftime(fTimeFormat) + ".log"
|
|
logfileErrors = logfile + datetime.now().strftime(fTimeFormat) + "_err" + ".log"
|
|
sys.stderr = open(logfileErrors, "w")
|
|
sys.stdout = open(logfilen, "w")
|
|
|
|
|
|
###################
|
|
# Senator Accounts
|
|
# Get accounts & alt-accounts from Senators-Datafile
|
|
accounts = getHandles(di)
|
|
|
|
# Print accounts to be scraped
|
|
print(printHandles(accounts))
|
|
|
|
###################
|
|
# Scraping
|
|
# report time:
|
|
timeStartScrape = datetime.now()
|
|
print("Starting scraping at:")
|
|
print(timeStartScrape.strftime(fTimeFormat))
|
|
print("---")
|
|
|
|
# Iterate over each Twitter account using multiprocessing
|
|
listUsers = []
|
|
# Iterate over each Twitter account using multiprocessing
|
|
with concurrent.futures.ProcessPoolExecutor() as executor:
|
|
# List to store the scraping tasks
|
|
tasks = []
|
|
for handle in accounts:
|
|
# Schedule the scraping task
|
|
task = executor.submit(
|
|
scrapeUsers, handle, userDFColumns
|
|
)
|
|
tasks.append(task)
|
|
|
|
# Wait for all tasks to complete and retrieve results
|
|
for task in concurrent.futures.as_completed(tasks):
|
|
result = task.result()
|
|
listUsers.append(result)
|
|
|
|
dfUsers = pd.DataFrame(listUsers, columns=userDFColumns)
|
|
dfUsers.to_csv(senCSVPath, encoding='utf-8')
|
|
|
|
# report time:
|
|
timeEndScrape = datetime.now()
|
|
print("---")
|
|
print("End of scraping at:")
|
|
print(timeEndScrape.strftime(fTimeFormat))
|
|
|
|
# Report timing info.
|
|
timeEndMerge = datetime.now()
|
|
print("---")
|
|
print("End of scraping at:")
|
|
print(timeEndMerge.strftime(fTimeFormat))
|
|
print("---")
|
|
# calulate times:
|
|
tThours, tTminutes, tTseconds = convertTime(timeEndMerge - timeStartScrape) # total execution time
|
|
tShours, tSminutes, tSseconds = convertTime(timeEndScrape - timeStartScrape) # scraping time
|
|
tMhours, tMminutes, tMseconds = convertTime(timeEndMerge - timeEndScrape) # merge time
|
|
print(
|
|
f"Total execution time: {tThours} hours, {tTminutes} minutes and {tTseconds} seconds"
|
|
)
|
|
print(f"Scraping time: {tShours} hours, {tSminutes} minutes and {tSseconds} seconds")
|
|
print(f"Time merging: {tMhours} hours, {tMminutes} minutes and {tMseconds} seconds")
|
|
|
|
print(listUsers)
|
|
# close connection to logfiles.
|
|
sys.stdout.close()
|
|
sys.stderr.close()
|