205 lines
6.7 KiB
Python
205 lines
6.7 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
'''
|
|
Created on Tue Jun 6 11:40:07 2023
|
|
|
|
@author: michael
|
|
'''
|
|
|
|
import os
|
|
import tweepy
|
|
import pandas as pd
|
|
import numpy as np
|
|
import glob
|
|
import time
|
|
|
|
## Setup directories
|
|
# WD Michael
|
|
wd = '/home/michael/Documents/PS/Data/collectTweets/'
|
|
|
|
# WD Server
|
|
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection'
|
|
|
|
# WD Josie
|
|
# wd = '/home/michael/Documents/PS/Data/'
|
|
|
|
# WD Sam
|
|
# wd = '/home/michael/Documents/PS/Data/'
|
|
|
|
# Tweet-datafile directory
|
|
td = 'data/tweets/'
|
|
|
|
os.chdir(wd)
|
|
|
|
## Setup Api-connection
|
|
bearer_token = 'AAAAAAAAAAAAAAAAAAAAAMVDlQEAAAAAal9f5uZrM12CVPA4f4jr4mGH5Oc%3DuTg1Vd0YKYMwraA7ibX6LiGyd337OXkm3JwudEX7vatruswmoc'
|
|
client = tweepy.Client(bearer_token, return_type = dict, wait_on_rate_limit = True)
|
|
|
|
# Define time period of interest
|
|
# Define time periods of interest
|
|
time_slices = [
|
|
{
|
|
'start_time': '2020-01-01T00:00:00Z',
|
|
'end_time': '2020-06-01T00:00:00Z',
|
|
'suffix': '-slice1'
|
|
},
|
|
{
|
|
'start_time': '2020-06-01T00:00:01Z',
|
|
'end_time': '2021-01-01T00:00:00Z',
|
|
'suffix': '-slice2'
|
|
},
|
|
{
|
|
'start_time': '2021-01-01T00:00:01Z',
|
|
'end_time': '2021-06-01T00:00:00Z',
|
|
'suffix': '-slice3'
|
|
},
|
|
{
|
|
'start_time': '2021-06-01T00:00:01Z',
|
|
'end_time': '2023-01-03T00:00:00Z',
|
|
'suffix': '-slice4'
|
|
}
|
|
]
|
|
|
|
# gather keywords @chenTrackingSocialMedia2020
|
|
# line80 ff: lamsalCoronavirusCOVID19Tweets2020
|
|
# Initialize the keywords list
|
|
keywords = []
|
|
|
|
# Read the keywords from a file
|
|
with open('data/keywords.txt', 'r') as file:
|
|
lines = file.readlines()
|
|
for line in lines:
|
|
keyword = line.strip() # Remove the newline character
|
|
keywords.append(keyword)
|
|
|
|
tweet_fields = [
|
|
'id',
|
|
'text',
|
|
'attachments',
|
|
'author_id',
|
|
'context_annotations',
|
|
'conversation_id',
|
|
'created_at',
|
|
'entities',
|
|
'geo',
|
|
'lang',
|
|
'possibly_sensitive',
|
|
'public_metrics',
|
|
'referenced_tweets',
|
|
'reply_settings',
|
|
'source',
|
|
'withheld',
|
|
]
|
|
|
|
# Get accounts & alt-accounts from Senators-Datafile
|
|
accounts = pd.read_csv('data/senators-raw.csv')['twitter_handle'].tolist()
|
|
alt_accounts = pd.read_csv('data/senators-raw.csv')['alt_handle'].tolist()
|
|
print(accounts)
|
|
print(alt_accounts)
|
|
|
|
# Iterate over each Twitter account
|
|
for handle in accounts:
|
|
for slice_data in time_slices:
|
|
# define slice data variables from time_slices
|
|
start_time = slice_data['start_time']
|
|
end_time = slice_data['end_time']
|
|
suffix = slice_data['suffix']
|
|
|
|
# define tweepy query with twitter handle of current sen
|
|
query = f'from:{handle} -is:retweet'
|
|
|
|
# create empty tweetlist that will be filled with tweets of current sen
|
|
tweetlist = []
|
|
|
|
# statusmsg
|
|
msg = f'trying to fetch tweets for {handle}{suffix}'
|
|
print(msg)
|
|
|
|
# Fetch tweets using tweepy Twitter API v2 pagination
|
|
tweets = tweepy.Paginator(client.search_all_tweets,
|
|
query=query,
|
|
tweet_fields=tweet_fields,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
max_results=20).flatten(20)
|
|
|
|
# for each tweet returned...
|
|
for tweet in tweets:
|
|
# ... add that tweet to tweetlist
|
|
tweetlist.append(tweet)
|
|
|
|
# Check if no tweets fetched for the current time slice. If there are no tweets, skip to next time_slices loop iteration
|
|
if len(tweetlist) == 0:
|
|
msg = f'return empty in {handle}{suffix} - from {start_time} to {end_time}'
|
|
print(msg)
|
|
continue
|
|
|
|
# convert to dataframe
|
|
tweet_df = pd.DataFrame(tweetlist)
|
|
|
|
# add handle column as api only provides user-ids
|
|
tweet_df['handle'] = handle
|
|
|
|
## Extract referenced_tweet info from column
|
|
tweet_df['referenced_tweet_type'] = None
|
|
tweet_df['referenced_tweet_id'] = None
|
|
|
|
# if cond. because in some cases column doesn't exist
|
|
if 'referenced_tweets' in tweet_df.columns:
|
|
for index, row in tweet_df.iterrows():
|
|
referenced_tweets = row['referenced_tweets']
|
|
|
|
if isinstance(referenced_tweets, list) and len(referenced_tweets) > 0:
|
|
referenced_tweet = referenced_tweets[0]
|
|
referenced_tweet_type = referenced_tweet['type']
|
|
referenced_tweet_id = referenced_tweet['id']
|
|
|
|
tweet_df.at[index, 'referenced_tweet_type'] = referenced_tweet_type
|
|
tweet_df.at[index, 'referenced_tweet_id'] = referenced_tweet_id
|
|
|
|
## Check if tweet-text contains keyword
|
|
# if cond. because in some cases column doesn't exist
|
|
if 'text' in tweet_df.columns:
|
|
tweet_df['contains_keyword'] = (tweet_df['text'].str.findall('|'.join(keywords))
|
|
.str.join(',')
|
|
.replace('', 'none'))
|
|
|
|
## Save two versions of the dataset, one with all fields and one without dict fields
|
|
# define filepaths
|
|
csv_path = f'data/tweets/{handle}{suffix}.csv'
|
|
csv_path2 = f'data/tweets/{handle}{suffix}-LONG.csv'
|
|
# save LONG csv
|
|
tweet_df.to_csv(csv_path2)
|
|
# Remove 'context_annotations', 'entities' and 'referenced_tweets' columns for short csv files
|
|
# if cond. because in some cases column doesn't exist
|
|
if all(k in tweet_df for k in ('context_annotations', 'entities', 'referenced_tweets')):
|
|
tweet_df = tweet_df.drop(['context_annotations', 'entities', 'referenced_tweets'], axis=1)
|
|
# save short csv
|
|
tweet_df.to_csv(csv_path)
|
|
# sleep 1 second to not get over 1sec api limit
|
|
time.sleep(1)
|
|
|
|
# Merge CSV-Files
|
|
# (it would also have been a possibility to build a dataframe with all senators' tweets but i found the other way around more useful)
|
|
path_to_tweetdfs = wd + td
|
|
os.chdir(path_to_tweetdfs)
|
|
tweetfiles = glob.glob('*.{}'.format('csv'))
|
|
|
|
print(tweetfiles)
|
|
|
|
# save merged csv as two files
|
|
df_all_senators = pd.DataFrame()
|
|
df_all_senators_long = pd.DataFrame()
|
|
for file in tweetfiles:
|
|
if 'LONG' in file:
|
|
df = pd.read_csv(file)
|
|
df_all_senators_long = pd.concat([df, df_all_senators_long])
|
|
else:
|
|
df = pd.read_csv(file)
|
|
df_all_senators = pd.concat([df, df_all_senators])
|
|
csv_path = td + 'ALL-SENATORS.csv'
|
|
csv_path2 = td + 'ALL-SENATORS-LONG-LONG.csv'
|
|
df_all_senators.to_csv(csv_path)
|
|
df_all_senators_long.to_csv(csv_path2)
|
|
|
|
os.chdir(wd) |