CollectUSSenatorTweets/cleanTweets.py
2023-06-26 23:51:32 +02:00

71 lines
2.0 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 26 20:36:43 2023
@author: michael
"""
import pandas as pd
import pyreadstat
###################
# Setup directories
# WD Michael
wd = "/home/michael/Documents/PS/Data/collectTweets/"
# WD Server
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
# datafile input directory
di = "data/IN/"
# Tweet-datafile output directory
ud = "data/OUT/"
# Name of file that all senator data will be written to
senCSV = "ALL-SENATORS-TWEETS.csv"
# Name of new datafile generated
senCSVc = "Tweets-Cleaned"
# don't change this one
senCSVPath = wd + ud + senCSV
senCSVcPath = wd + ud + senCSV + ".csv"
senSAVcPath = wd + ud + senCSV + ".sav"
senDTAcPath = wd + ud + senCSV + ".dta"
df = pd.read_csv(senCSVPath)
df = df.drop(columns=['user.url', 'user.username', 'cashtags', 'coordinates', 'hashtags', 'Unnamed: 0', 'user.verified', 'lang'], index=1)
del df[df.columns[0]] # remove first col
# sort and generate id
df = df.sort_values(by='date').reset_index() # sort df by date before generating id
df["tid"] = df.index + 1 # create id column
# move id column to front
cols = list(df.columns.values) # Make a list of all of the columns in the df
cols.pop(cols.index('tid')) # Remove id from list
cols.pop(cols.index('id')) # Remove id from list
df = df[['id','tid']+cols] # Create new dataframe with ordered colums
# create keyword column
mask = (df['contains_keyword'] != 'none') # select all values in contains_keyword == 'none'
df.loc[mask,'keywords'] = df['contains_keyword'] # set keywords = contains_keyword under the condition of mask
# recode contains keyword to bool
mask = (df['contains_keyword'] != 'none')
df.loc[mask,'contains_keyword'] = True
df.loc[~mask,'contains_keyword'] = False # ~ negates mask, selecting all values that do not contain keywords
pd.Series(df["id"]).is_unique
"""
# Export to csv, sav and dta
df_nondupe.to_csv(senCSVcPath)
# pyreadstat.write_sav(df, senSAVcPath) # commented out because file generated is 11 gb
pyreadstat.write_dta(df, senDTAcPath)
"""
#