2023-06-23 19:18:03 +02:00

57 lines
2.2 KiB
Python

from datetime import datetime
import time
import pandas as pd
import snscrape.modules.twitter as sntwitter
def scrapeTweets(handle, slice_data, keywords, td, tweetDFColumns, maxTweets = 5000):
i = 0
currentTime = datetime.now()
ts_beg = slice_data['beg_time']
ts_end = slice_data['end_time']
suffix = slice_data['suffix']
tweetDataFilePath = td + f"Tweets-{handle}{suffix}.csv"
# create empty tweetlist that will be filled with tweets of current sen
TweetList = []
# statusmsg
print(f'{currentTime:<30} Fetching: {handle:>15}{suffix:<7} - from {ts_beg} to {ts_end}')
# Snscrape query:
query = f'from:{handle} since:{ts_beg} until:{ts_end}'
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()):
if i >= maxTweets:
break
# get tweet vars from tweetDFColumns and append to singleTweetList
# which will then be appended to TweetList. TweetList contains all tweets of the current slice.
singleTweetList = []
for col in tweetDFColumns:
singleTweetList.append(eval(f'tweet.{col}'))
TweetList.append(singleTweetList)
# # Check if no tweets fetched for the current time slice. If there are no tweets, skip to next time_slices loop iteration
# if not TweetList:
# open(tweetDataFilePath, 'a').close()
# print(f'return empty in {handle}{suffix} - from {ts_beg} to {ts_end}')
# return
print(f'{i:<6} tweets scraped for: {handle:>15}{suffix:<7}')
# convert to dataframe
tweet_df = pd.DataFrame(TweetList, columns=tweetDFColumns)
## Check if tweet-text contains keyword
tweet_df['contains_keyword'] = ''
tweet_df['contains_keyword'] = (
tweet_df['rawContent'].str.findall('|'.join(keywords)).str.join(',').replace('', 'none')
)
#return(tweet_df)
# Save two versions of the dataset, one with all fields and one without dict fields
# define filepaths
csv_path = tweetDataFilePath
# save short csv
tweet_df.to_csv(csv_path, encoding='utf-8')
# sleep 1 second to not get blocked because of excessive requests
time.sleep(0.5)