Torn.com-ActivityTracker/app/analysis/plot_heat_user-activity-hour.py
Michael Beck 5e98a0ba47 init
2025-02-22 16:55:41 +01:00

56 lines
1.9 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from .basePlotAnalysis import BasePlotAnalysis
import matplotlib
matplotlib.use('Agg')
class PlotActivityHeatmap(BasePlotAnalysis):
"""
Class for analyzing user activity trends over multiple days and generating a heatmap.
Attributes:
name (str): The name of the analysis.
description (str): A brief description of the analysis.
plot_filename (str): The filename for the output plot.
note (str): Additional notes for the analysis.
"""
name = "Activity Heatmap"
description = "Displays user activity trends over multiple days using a heatmap. Generates a downloadable PNG image."
plot_filename = "activity_heatmap.png"
note = ""
def transform_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Transform data for the heatmap.
Parameters:
df (pd.DataFrame): The input DataFrame containing user activity data.
Returns:
pd.DataFrame: The transformed DataFrame with activity counts by hour.
"""
active_counts = df[df['was_active']].pivot_table(
index='name',
columns='hour',
values='was_active',
aggfunc='sum',
fill_value=0
)
active_counts['total_active_minutes'] = active_counts.sum(axis=1)
return active_counts.sort_values(by='total_active_minutes', ascending=False)
def plot_data(self, df: pd.DataFrame):
"""
Generate heatmap plot.
Parameters:
df (pd.DataFrame): The transformed DataFrame containing activity counts by hour.
"""
plt.figure(figsize=(12, 8))
sns.heatmap(df.loc[:, df.columns != 'total_active_minutes'], cmap='viridis', cbar_kws={'label': 'Count of was_active == True'})
plt.xlabel('Hour of Day')
plt.ylabel('User ID')
plt.title('User Activity Heatmap')