corrects some mistakes
This commit is contained in:
		
							
								
								
									
										16
									
								
								collect.py
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								collect.py
									
									
									
									
									
								
							| @@ -188,22 +188,22 @@ print(timeStartScrape.strftime(fTimeFormat)) | ||||
| print("---") | ||||
|  | ||||
| # Iterate over each Twitter account using multiprocessing | ||||
| with concurrent.futures.ThreadPoolExecutor() as executor: | ||||
| # Iterate over each Twitter account using multiprocessing | ||||
| with concurrent.futures.ProcessPoolExecutor() as executor: | ||||
|     # List to store the scraping tasks | ||||
|     tasks = [] | ||||
|  | ||||
|     for handle in accounts: | ||||
|         # Iterate over each time slice | ||||
|         for slice_data in time_slices: | ||||
|             # ... code to prepare the slice_data ... | ||||
|  | ||||
|             # ... Code to prepare the slice_data ... | ||||
|             # Schedule the scraping task | ||||
|             task = executor.submit(scrapeTweets, handle, slice_data, keywords, td, tweetDFColumns) | ||||
|             task = executor.submit( | ||||
|                 scrapeTweets, handle, slice_data, keywords, td, tweetDFColumns | ||||
|             ) | ||||
|             tasks.append(task) | ||||
|  | ||||
|     # Wait for all tasks to complete | ||||
|     concurrent.futures.wait(tasks) | ||||
|  | ||||
|      | ||||
| timeEndScrape = datetime.now() | ||||
| print("---") | ||||
| print("End of scraping at:") | ||||
| @@ -227,7 +227,7 @@ with open(f"{logfile}missing-"+timeStartScrape.strftime(fTimeFormat)+".txt", "w" | ||||
| if file_alltweets in tweetfiles: | ||||
|     tweetfiles.remove(file_alltweets) | ||||
| # Go through all csv files and merge them into file_alltweets | ||||
| if len(tweetfiles) > 0: | ||||
| if tweetfiles: | ||||
|     with open(file_alltweets, "wb") as fout: | ||||
|         # first file (because of the header): | ||||
|         with open(tweetfiles[0], "rb") as f: | ||||
|   | ||||
| @@ -1,7 +1,9 @@ | ||||
| from datetime import datetime, time | ||||
| import pandas as pd | ||||
| import snscrape.modules.twitter as sntwitter | ||||
|  | ||||
| def scrapeTweets(handle, slice_data, keywords, td, tweetDFColumns, maxTweets = 5000): | ||||
|     from datetime import datetime, time | ||||
|     import pandas as pd | ||||
|     import snscrape.modules.twitter as sntwitter | ||||
|     i = 0 | ||||
|      | ||||
|     currentTime = datetime.now | ||||
|     ts_beg = slice_data['beg_time'] | ||||
| @@ -18,17 +20,19 @@ def scrapeTweets(handle, slice_data, keywords, td, tweetDFColumns, maxTweets = 5 | ||||
|     # Snscrape query: | ||||
|     query = f'from:{handle} since:{ts_beg} until:{ts_end}' | ||||
|     for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query).get_items()): | ||||
|         if i>maxTweets: | ||||
|         if i >= maxTweets: | ||||
|             break | ||||
|         # get tweet vars from tweetDFColumns and append to singleTweetList | ||||
|         # which will then be appended to TweetList. TweetList contains all tweets of the current slice. | ||||
|         singleTweetList = [singleTweetList.append(eval(f'tweet.{col}')) for col in tweetDFColumns] | ||||
|         TweetList.append(singleTweetList) | ||||
|      | ||||
|     # Check if no tweets fetched for the current time slice. If there are no tweets, skip to next time_slices loop iteration | ||||
|     if TweetList: | ||||
|     if not TweetList: | ||||
|         open(tweetDataFilePath, 'a').close() | ||||
|         print(f'return empty in {handle}{suffix} - from {ts_beg} to {ts_end}') | ||||
|         return         | ||||
|      | ||||
|     print(f'{i:<6} tweets scraped for: {handle:>15}{suffix:<7}') | ||||
|          | ||||
|     # convert to dataframe | ||||
| @@ -36,7 +40,9 @@ def scrapeTweets(handle, slice_data, keywords, td, tweetDFColumns, maxTweets = 5 | ||||
|          | ||||
|     ## Check if tweet-text contains keyword | ||||
|     tweet_df['contains_keyword'] = '' | ||||
|     tweet_df['contains_keyword'] = (tweet_df['rawContent'].str.findall('|'.join(keywords)).str.join(',').replace('', 'none')) | ||||
|     tweet_df['contains_keyword'] = ( | ||||
|         tweet_df['rawContent'].str.findall('|'.join(keywords)).str.join(',').replace('', 'none') | ||||
|     ) | ||||
|     ## Save two versions of the dataset, one with all fields and one without dict fields | ||||
|     # define filepaths | ||||
|     csv_path = tweetDataFilePath | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Michael Beck
					Michael Beck