adds cleanTweets.py
This commit is contained in:
parent
82830f13e2
commit
c64904a64d
70
cleanTweets.py
Normal file
70
cleanTweets.py
Normal file
@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Jun 26 20:36:43 2023
|
||||
|
||||
@author: michael
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import pyreadstat
|
||||
|
||||
|
||||
###################
|
||||
# Setup directories
|
||||
# WD Michael
|
||||
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
||||
# WD Server
|
||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
||||
|
||||
# datafile input directory
|
||||
di = "data/IN/"
|
||||
|
||||
# Tweet-datafile output directory
|
||||
ud = "data/OUT/"
|
||||
|
||||
# Name of file that all senator data will be written to
|
||||
senCSV = "ALL-SENATORS-TWEETS.csv"
|
||||
|
||||
# Name of new datafile generated
|
||||
senCSVc = "Tweets-Cleaned"
|
||||
|
||||
# don't change this one
|
||||
senCSVPath = wd + ud + senCSV
|
||||
senCSVcPath = wd + ud + senCSV + ".csv"
|
||||
senSAVcPath = wd + ud + senCSV + ".sav"
|
||||
senDTAcPath = wd + ud + senCSV + ".dta"
|
||||
|
||||
df = pd.read_csv(senCSVPath)
|
||||
|
||||
df = df.drop(columns=['user.url', 'user.username', 'cashtags', 'coordinates', 'hashtags', 'Unnamed: 0', 'user.verified', 'lang'], index=1)
|
||||
del df[df.columns[0]] # remove first col
|
||||
# sort and generate id
|
||||
df = df.sort_values(by='date').reset_index() # sort df by date before generating id
|
||||
df["tid"] = df.index + 1 # create id column
|
||||
# move id column to front
|
||||
cols = list(df.columns.values) # Make a list of all of the columns in the df
|
||||
cols.pop(cols.index('tid')) # Remove id from list
|
||||
cols.pop(cols.index('id')) # Remove id from list
|
||||
df = df[['id','tid']+cols] # Create new dataframe with ordered colums
|
||||
|
||||
# create keyword column
|
||||
mask = (df['contains_keyword'] != 'none') # select all values in contains_keyword == 'none'
|
||||
df.loc[mask,'keywords'] = df['contains_keyword'] # set keywords = contains_keyword under the condition of mask
|
||||
|
||||
# recode contains keyword to bool
|
||||
mask = (df['contains_keyword'] != 'none')
|
||||
df.loc[mask,'contains_keyword'] = True
|
||||
df.loc[~mask,'contains_keyword'] = False # ~ negates mask, selecting all values that do not contain keywords
|
||||
|
||||
pd.Series(df["id"]).is_unique
|
||||
|
||||
"""
|
||||
# Export to csv, sav and dta
|
||||
df_nondupe.to_csv(senCSVcPath)
|
||||
# pyreadstat.write_sav(df, senSAVcPath) # commented out because file generated is 11 gb
|
||||
pyreadstat.write_dta(df, senDTAcPath)
|
||||
"""
|
||||
#
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user