Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
27746cd886 | |||
02c3d055bd | |||
dc2e17cc2f |
126
collect.py
126
collect.py
@ -4,9 +4,9 @@ Created on Thu Jun 8 01:08:21 2023
|
||||
|
||||
@author: Michael
|
||||
|
||||
# https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
|
||||
|
||||
Following files are necessary:
|
||||
config.py
|
||||
Used to configure everything that's needed for this script.
|
||||
funs/TimeSlice.py
|
||||
Function get_Tslices slices the defined timespan in config.py into N
|
||||
slices. Is necessary due to possible blocking of requests by twitter.
|
||||
@ -15,6 +15,8 @@ Following files are necessary:
|
||||
Function deDupe reads each line of inFile and removes duplicate lines.
|
||||
A file outFile is saved without the duplicate lines. Generates
|
||||
"keywords.txt".
|
||||
funs/Scrape.py
|
||||
scrapes using snscrape.modules.twitter. See docstring.
|
||||
data/keywords-raw.txt
|
||||
Contains all keywords that are used to detect whether a tweet contains
|
||||
information about Covid19.
|
||||
@ -60,21 +62,30 @@ import sys
|
||||
from datetime import datetime
|
||||
import concurrent.futures
|
||||
|
||||
## Setup directories
|
||||
###################
|
||||
# Setup directories
|
||||
# WD Michael
|
||||
wd = "/home/michael/Documents/PS/Data/collectTweets/"
|
||||
# WD Server
|
||||
# wd = '/home/yunohost.multimedia/polsoc/Politics & Society/TweetCollection/'
|
||||
|
||||
# datafile input directory
|
||||
di = "data/IN/"
|
||||
|
||||
# Tweet-datafile output directory
|
||||
td = "data/tweets/"
|
||||
td = "data/OUT/"
|
||||
|
||||
# Name of file that all tweets will be written to
|
||||
file_alltweets = "ALL-SENATORS-TWEETS.csv"
|
||||
|
||||
# don't change this one
|
||||
path_to_tweetdfs = wd + td
|
||||
|
||||
## Define Timespan
|
||||
# Name of logfile
|
||||
logfile = wd+"log/log_"
|
||||
|
||||
###################
|
||||
# Define Timespan & time-format
|
||||
# Format: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
||||
ts_beg = "2020-01-01T00:00:00Z" # start of scraping
|
||||
ts_end = "2023-01-03T00:00:00Z" # end of straping
|
||||
@ -86,10 +97,8 @@ fTimeFormat = "%Y-%m-%d_%H-%M-%S"
|
||||
# Maximum tweets to be scraped by snscrape. Can be left untouched.
|
||||
maxTweets = 5000
|
||||
|
||||
# Name of logfile
|
||||
logfile = wd+"log/log_"
|
||||
|
||||
## Install snscrape from local git repo to make shure that it fits the used version.
|
||||
###################
|
||||
# Install snscrape from local git repo to make shure that it fits the used version.
|
||||
# If snscrape is already installed, uncomment the following lines:
|
||||
"""
|
||||
import subprocess
|
||||
@ -98,7 +107,9 @@ subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-e', '.'])
|
||||
os.chdir(wd)
|
||||
"""
|
||||
|
||||
# Columns for tweet dataframe
|
||||
# Columns for tweet dataframe. Parameters for snscrape.modules.twitter.Tweet:
|
||||
# https://thetechrobo.ca/snscrape-docs/_autosummary/snscrape.modules.twitter.Tweet.html
|
||||
# get subparams just like in user where user id can be obtained by user.id
|
||||
tweetDFColumns = [
|
||||
"id",
|
||||
"user.id",
|
||||
@ -135,18 +146,22 @@ tweetDFColumns = [
|
||||
"source",
|
||||
]
|
||||
|
||||
## Import other files
|
||||
## Import functions
|
||||
from funs.TimeSlice import *
|
||||
from funs.ClearDupes import deDupe
|
||||
from funs.Scrape import scrapeTweets
|
||||
|
||||
# create logfile & log all outputs
|
||||
logfilen = logfile + datetime.now().strftime(fTimeFormat) + ".txt"
|
||||
logfileErrors = logfile + datetime.now().strftime(fTimeFormat) + "_err" + ".txt"
|
||||
###################
|
||||
# Create logfile & log all outputs
|
||||
# there are three logfile types to be found in /log.
|
||||
# should be self explanatory.
|
||||
logfilen = logfile + datetime.now().strftime(fTimeFormat) + ".log"
|
||||
logfileErrors = logfile + datetime.now().strftime(fTimeFormat) + "_err" + ".log"
|
||||
sys.stderr = open(logfileErrors, "w")
|
||||
sys.stdout = open(logfilen, "w")
|
||||
|
||||
## Create List of time-period-slices
|
||||
###################
|
||||
# Create List of time-period-slices
|
||||
time_slices = get_Tslices(ts_beg, ts_end, no_slices)
|
||||
# Print slices
|
||||
print("Time-period-slices:")
|
||||
@ -154,19 +169,22 @@ for slice in time_slices:
|
||||
print(slice["suffix"] + ": " + slice["beg_time"] + " - " + slice["end_time"])
|
||||
print("---")
|
||||
|
||||
## Keywords
|
||||
###################
|
||||
# Keywords
|
||||
# read keywords from a file and write to list.
|
||||
keywords = []
|
||||
# Remove duplicate Keywords and save all non-duplicates to 'data/keywords.txt'
|
||||
deDupe("data/keywords-raw.txt", "data/keywords.txt")
|
||||
deDupe(f"{di}keywords-raw.txt", f"{di}keywords.txt")
|
||||
# Read the keywords from a file
|
||||
with open("data/keywords.txt", "r") as file:
|
||||
with open(f"{di}keywords.txt", "r") as file:
|
||||
lines = file.readlines()
|
||||
for line in lines:
|
||||
keyword = line.strip() # Remove the newline character
|
||||
keywords.append(keyword)
|
||||
print("---")
|
||||
|
||||
## Senator Accounts
|
||||
###################
|
||||
# Senator Accounts
|
||||
# Get accounts & alt-accounts from Senators-Datafile
|
||||
accounts = pd.read_csv("data/senators-raw.csv")["twitter_handle"].tolist()
|
||||
alt_accounts = pd.read_csv("data/senators-raw.csv")["alt_handle"].tolist()
|
||||
@ -181,52 +199,61 @@ for i, acc in enumerate(accounts): # print 5 accounts per line
|
||||
print("\n")
|
||||
print(f"\n{i} accounts in total.\n---")
|
||||
|
||||
## Scraping
|
||||
###################
|
||||
# Scraping
|
||||
# report time:
|
||||
timeStartScrape = datetime.now()
|
||||
print("Starting scraping at:")
|
||||
print(timeStartScrape.strftime(fTimeFormat))
|
||||
print("---")
|
||||
|
||||
# Iterate over each Twitter account using multiprocessing
|
||||
# with concurrent.futures.ProcessPoolExecutor() as executor:
|
||||
# # List to store the scraping tasks
|
||||
# tasks = []
|
||||
# for handle in accounts:
|
||||
# # Iterate over each time slice
|
||||
# for slice_data in time_slices:
|
||||
# # ... Code to prepare the slice_data ...
|
||||
# # Schedule the scraping task
|
||||
# task = executor.submit(
|
||||
# scrapeTweets, handle, slice_data, keywords, td, tweetDFColumns
|
||||
# )
|
||||
# # Store the handle and slice_data as attributes of the task
|
||||
# # Wait for all tasks to complete
|
||||
# concurrent.futures.wait(tasks)
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor() as executor:
|
||||
# List to store the scraping tasks
|
||||
tasks = []
|
||||
for handle in accounts:
|
||||
# Iterate over each time slice
|
||||
for slice_data in time_slices:
|
||||
# ... Code to prepare the slice_data ...
|
||||
# Schedule the scraping task
|
||||
task = executor.submit(
|
||||
scrapeTweets, handle, keywords, td, tweetDFColumns, slice_data['beg_time'], slice_data['end_time'], slice_data['suffix']
|
||||
)
|
||||
# Store the handle and slice_data as attributes of the task
|
||||
# Wait for all tasks to complete
|
||||
concurrent.futures.wait(tasks)
|
||||
|
||||
# report time:
|
||||
timeEndScrape = datetime.now()
|
||||
print("---")
|
||||
print("End of scraping at:")
|
||||
print(timeEndScrape.strftime(fTimeFormat))
|
||||
|
||||
## Merge CSV-Files to file_alltweets.
|
||||
# fastest way is to save the slices seperately and then add every file to the output instead of using pandas or anything else.
|
||||
os.chdir(path_to_tweetdfs)
|
||||
# At first check, whether all slices are present.
|
||||
tweetfiles = glob.glob("*.csv") # get list of all csv files in folder - before: "*.{}".format("csv")
|
||||
###################
|
||||
# Merge CSV-Files to file_alltweets.
|
||||
# fastest way is to save the slices seperately and then add every file to the
|
||||
# output instead of using pandas or anything else.
|
||||
os.chdir(path_to_tweetdfs) # change dir to use glob to get list of csv-files in dir
|
||||
## At first check, whether all slices are present.
|
||||
tweetfiles = glob.glob("*.csv") # get list of all csv files in folder - before: "*.{}".format("csv") ???
|
||||
# Create list of all files that should be in the folder:
|
||||
AllFilesList = []
|
||||
for handle in accounts:
|
||||
for tslice in time_slices:
|
||||
suffix = tslice['suffix']
|
||||
AllFilesList.append(f"Tweets-{handle}{suffix}.csv")
|
||||
with open(f"{logfile}"+timeStartScrape.strftime(fTimeFormat)+"_missing.txt", "w") as fout:
|
||||
AllFilesList.append(f"Tweets-{handle}{suffix}.csv")
|
||||
# report missing files to "log_*_missing.txt"
|
||||
with open(f"{logfile}"+timeStartScrape.strftime(fTimeFormat)+"_missing.log", "w") as fout:
|
||||
for file in AllFilesList:
|
||||
if file not in tweetfiles:
|
||||
fout.write(f'Missing: {file}.\n') # if file is not in tweetfiles, print error message.
|
||||
else:
|
||||
fout.write('all slices scraped.')
|
||||
|
||||
|
||||
# check if file_alltweets (previously scraped tweets that have been merged into one file) exists, if it exists, remove from list to not include it in the following merge
|
||||
## Merge .csv files.
|
||||
# check if file_alltweets (previously scraped tweets that have been merged
|
||||
# into one file) exists in tweetfiles list, if it exists, remove from list
|
||||
# to not include it in the following merge
|
||||
if file_alltweets in tweetfiles:
|
||||
tweetfiles.remove(file_alltweets)
|
||||
# Go through all csv files and merge them into file_alltweets
|
||||
@ -240,21 +267,24 @@ if tweetfiles:
|
||||
with open(file, "rb") as f:
|
||||
next(f) # skip the header
|
||||
fout.write(f.read())
|
||||
os.chdir(wd)
|
||||
os.chdir(wd) # go back to wd
|
||||
|
||||
# Report timing info.
|
||||
timeEndMerge = datetime.now()
|
||||
print("---")
|
||||
print("End of scraping at:")
|
||||
print(timeEndMerge.strftime(fTimeFormat))
|
||||
print("---")
|
||||
tThours, tTminutes, tTseconds = convertTime(timeEndMerge - timeStartScrape)
|
||||
tShours, tSminutes, tSseconds = convertTime(timeEndScrape - timeStartScrape)
|
||||
tMhours, tMminutes, tMseconds = convertTime(timeEndMerge - timeEndScrape)
|
||||
# calulate times:
|
||||
tThours, tTminutes, tTseconds = convertTime(timeEndMerge - timeStartScrape) # total execution time
|
||||
tShours, tSminutes, tSseconds = convertTime(timeEndScrape - timeStartScrape) # scraping time
|
||||
tMhours, tMminutes, tMseconds = convertTime(timeEndMerge - timeEndScrape) # merge time
|
||||
print(
|
||||
f"Total execution time: {tThours} hours, {tTminutes} minutes and {tTseconds} seconds"
|
||||
)
|
||||
print(f"Scraping time: {tShours} hours, {tSminutes} minutes and {tSseconds} seconds")
|
||||
print(f"Time merging: {tMhours} hours, {tMminutes} minutes and {tMseconds} seconds")
|
||||
|
||||
# close connection to logfiles.
|
||||
sys.stdout.close()
|
||||
sys.stderr.close()
|
||||
|
@ -1,140 +0,0 @@
|
||||
Coronavirus
|
||||
Koronavirus
|
||||
Corona
|
||||
CDC
|
||||
Wuhancoronavirus
|
||||
Wuhanlockdown
|
||||
Ncov
|
||||
Wuhan
|
||||
N95
|
||||
Kungflu
|
||||
Epidemic
|
||||
outbreak
|
||||
Sinophobia
|
||||
China
|
||||
covid-19
|
||||
corona virus
|
||||
covid
|
||||
covid19
|
||||
sars-cov-2
|
||||
COVIDー19
|
||||
COVD
|
||||
pandemic
|
||||
coronapocalypse
|
||||
canceleverything
|
||||
Coronials
|
||||
SocialDistancingNow
|
||||
Social Distancing
|
||||
SocialDistancing
|
||||
panicbuy
|
||||
panic buy
|
||||
panicbuying
|
||||
panic buying
|
||||
14DayQuarantine
|
||||
DuringMy14DayQuarantine
|
||||
panic shop
|
||||
panic shopping
|
||||
panicshop
|
||||
InMyQuarantineSurvivalKit
|
||||
panic-buy
|
||||
panic-shop
|
||||
coronakindness
|
||||
quarantinelife
|
||||
chinese virus
|
||||
chinesevirus
|
||||
stayhomechallenge
|
||||
stay home challenge
|
||||
sflockdown
|
||||
DontBeASpreader
|
||||
lockdown
|
||||
lock down
|
||||
shelteringinplace
|
||||
sheltering in place
|
||||
staysafestayhome
|
||||
stay safe stay home
|
||||
trumppandemic
|
||||
trump pandemic
|
||||
flattenthecurve
|
||||
flatten the curve
|
||||
china virus
|
||||
chinavirus
|
||||
quarentinelife
|
||||
PPEshortage
|
||||
saferathome
|
||||
stayathome
|
||||
stay at home
|
||||
stay home
|
||||
stayhome
|
||||
GetMePPE
|
||||
covidiot
|
||||
epitwitter
|
||||
pandemie
|
||||
wear a mask
|
||||
wearamask
|
||||
kung flu
|
||||
covididiot
|
||||
COVID__19
|
||||
omicron
|
||||
variant
|
||||
vaccine
|
||||
travel ban
|
||||
corona
|
||||
coronavirus
|
||||
sarscov2
|
||||
sars cov2
|
||||
sars cov 2
|
||||
covid_19
|
||||
ncov
|
||||
ncov2019
|
||||
2019-ncov
|
||||
pandemic 2019ncov
|
||||
2019ncov
|
||||
quarantine
|
||||
flattening the curve
|
||||
flatteningthecurve
|
||||
flattenthecurve
|
||||
hand sanitizer
|
||||
handsanitizer
|
||||
social distancing
|
||||
socialdistancing
|
||||
work from home
|
||||
workfromhome
|
||||
working from home
|
||||
workingfromhome
|
||||
ppe
|
||||
n95
|
||||
covidiots
|
||||
herd immunity
|
||||
herdimmunity
|
||||
pneumonia
|
||||
wuhan virus
|
||||
wuhanvirus
|
||||
kungflu
|
||||
vaccines
|
||||
corona vaccine
|
||||
corona vaccines
|
||||
coronavaccine
|
||||
coronavaccines
|
||||
face shield
|
||||
faceshield
|
||||
face shields
|
||||
faceshields
|
||||
health worker
|
||||
healthworker
|
||||
health workers
|
||||
healthworkers
|
||||
stayhomestaysafe
|
||||
coronaupdate
|
||||
frontlineheroes
|
||||
coronawarriors
|
||||
homeschool
|
||||
homeschooling
|
||||
hometasking
|
||||
masks4all
|
||||
wfh
|
||||
wash ur hands
|
||||
wash your hands
|
||||
washurhands
|
||||
washyourhands
|
||||
selfisolating
|
||||
self isolating
|
24
data/tweets/.gitignore
vendored
24
data/tweets/.gitignore
vendored
@ -1,24 +0,0 @@
|
||||
/ALL-SENATORS-LONG-LONG.csv
|
||||
/ALL-SENATORS.csv
|
||||
/CoryGardner-LONG.csv
|
||||
/CoryGardner.csv
|
||||
/DavidPerdueGA-LONG.csv
|
||||
/DavidPerdueGA.csv
|
||||
/DougJones-LONG.csv
|
||||
/DougJones.csv
|
||||
/KLoeffler-LONG.csv
|
||||
/KLoeffler.csv
|
||||
/MarthaMcSallyAZ-LONG.csv
|
||||
/MarthaMcSallyAZ.csv
|
||||
/SenAlexander-LONG.csv
|
||||
/SenAlexander.csv
|
||||
/SenPatRoberts-LONG.csv
|
||||
/SenPatRoberts.csv
|
||||
/SenatorEnzi-LONG.csv
|
||||
/SenatorEnzi.csv
|
||||
/SenatorIsakson-LONG.csv
|
||||
/SenatorIsakson.csv
|
||||
/SenatorTomUdall-LONG.csv
|
||||
/SenatorTomUdall.csv
|
||||
/VP-LONG.csv
|
||||
/VP.csv
|
@ -3,13 +3,22 @@ import time
|
||||
import pandas as pd
|
||||
import snscrape.modules.twitter as sntwitter
|
||||
|
||||
def scrapeTweets(handle, slice_data, keywords, td, tweetDFColumns, maxTweets = 5000):
|
||||
def scrapeTweets(handle, keywords, td, tweetDFColumns, ts_beg, ts_end, suffix, maxTweets = 5000):
|
||||
"""Scrapes tweets from a specific account in a specific time span using snscrape.modules.twitter.
|
||||
|
||||
Args:
|
||||
handle (str): twitter handle of account to be scraped
|
||||
keywords (list): list of strings containing the keywords that the tweets shall be searched for
|
||||
td (str): tweet file output path
|
||||
tweetDFColumns (list): Columns for tweet dataframe. Parameters for snscrape.modules.twitter.Tweet
|
||||
ts_beg (str): scrape from ... YYYY-MM-DDTHH:MM:SSZ from datetime: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
||||
ts_end (_type_): scrape until ... YYYY-MM-DDTHH:MM:SSZ from datetime: %Y-%m-%dT%H:%M:%SZ (https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes)
|
||||
suffix (str): suffix that shall be added to filename after the handle. Example: "-slice1" of handle "handle" will produce the file "Tweets-handle-slice1.csv"
|
||||
maxTweets (int, optional): Maximum number of tweets to be scraped. Defaults to 5000.
|
||||
"""
|
||||
i = 0
|
||||
|
||||
currentTime = datetime.now()
|
||||
ts_beg = slice_data['beg_time']
|
||||
ts_end = slice_data['end_time']
|
||||
suffix = slice_data['suffix']
|
||||
tweetDataFilePath = td + f"Tweets-{handle}{suffix}.csv"
|
||||
|
||||
# create empty tweetlist that will be filled with tweets of current sen
|
||||
|
@ -8,6 +8,16 @@ Created on Wed Jun 21 13:58:42 2023
|
||||
|
||||
# create slices
|
||||
def get_Tslices(ts_beg, ts_end, no_slices):
|
||||
"""Splits the time-period between two points in time into #no_slices and returns start and end time of each slice period.
|
||||
|
||||
Args:
|
||||
ts_beg (datetime): Datetime start of overall period to be sliced.
|
||||
ts_end (datetime): Datetime end of overall period to be sliced.
|
||||
no_slices (int): number of slices. 24 e.g. will produce 24 start and end dates each.
|
||||
|
||||
Returns:
|
||||
list[dict[str:datetime|str]]: One dict for each containing 'beg_time' 'end_time' and 'suffix' (e.g. -slice1)
|
||||
"""
|
||||
from datetime import datetime
|
||||
from datetime import timedelta
|
||||
ts_beg = datetime.strptime(ts_beg, '%Y-%m-%dT%H:%M:%SZ')
|
||||
@ -25,6 +35,16 @@ def get_Tslices(ts_beg, ts_end, no_slices):
|
||||
|
||||
# For log time conversions (seconds to days, hours, minutes)
|
||||
def convertTime(duration):
|
||||
"""Converts seconds to hours, minutes and seconds.
|
||||
|
||||
Args:
|
||||
duration (int): seconds
|
||||
|
||||
Returns:
|
||||
int: hours
|
||||
int: minutes
|
||||
int: seconds
|
||||
"""
|
||||
days, seconds = duration.days, duration.seconds
|
||||
hours = days * 24 + seconds // 3600
|
||||
minutes = (seconds % 3600) // 60
|
||||
|
Reference in New Issue
Block a user