131 lines
6.7 KiB
Markdown
131 lines
6.7 KiB
Markdown
# Requirements
|
|
|
|
- python 3.10+
|
|
- snscrape 0.6.2.20230321+ (see git repo in this folder)
|
|
- transformers 4.31.0
|
|
- numpy 1.23.5
|
|
- pandas 2.0.3
|
|
- scikit-learn 1.3.0
|
|
- torch 2.0.1
|
|
|
|
# About
|
|
|
|
This collection of scripts scrapes tweets of US-senators in the time from 2020-01-01T00:00:00Z to 2023-01-03T00:00:00Z, scrapes account data of the senators, prepares the tweets for the training of a NLP-model, trains two models to (1) classify the tweets topic as covid or non-covid and (2) the tweets as either "fake news" tweets or "non-fake news" tweets.
|
|
Training only works with a prepared dataset in which the tweets are pre classified.
|
|
More info in the comments of the scripts.
|
|
Due to time constraints, most of the code is procedurally coded and ugly but effective.
|
|
|
|
# How to
|
|
|
|
Tested on Ubuntu 22.04.
|
|
If needed, the virual environment can be exported and send to you.
|
|
|
|
All files in the folder data/in have to exist in order to execute the scripts.
|
|
Execute in the following order:
|
|
|
|
01 collect.py (see more for further info on scraping)
|
|
02 collectSenData.py
|
|
03 cleanTweets
|
|
04 preTestClassification.py
|
|
05 trainTopic.py
|
|
06 trainFake.py
|
|
07 ClassificationFake.py
|
|
08 ClassificationTopic.py
|
|
|
|
# Files & Folders
|
|
|
|
Datafiles are not included in the repository but can be found in the full package that can be downloaded from [here](https://ncloud.mischbeck.de/s/T4QcMDSfYSkadYC) (password protected).
|
|
|
|
```
|
|
├── data
|
|
│ ├── IN
|
|
│ │ ├── counterKeywordsFinal.txt
|
|
│ │ ├── counterKeywords.txt
|
|
│ │ ├── keywords-raw.txt
|
|
│ │ ├── keywords.txt
|
|
│ │ ├── own_keywords.txt
|
|
│ │ ├── pretest-tweets_fake.txt contains tweet ids for pretest
|
|
│ │ ├── pretest-tweets_not_fake.txt contains tweet ids for pretest
|
|
│ │ └── senators-raw.csv senator datafile
|
|
│ ├── OUT
|
|
│ │ ├── ALL-SENATORS-TWEETS.csv
|
|
│ │ ├── graphs
|
|
│ │ │ ├── Timeline.png
|
|
│ │ │ ├── Wordcloud-All.png
|
|
│ │ │ └── Wordcloud-Cov.png
|
|
│ │ ├── Pretest-Prep.csv
|
|
│ │ ├── Pretest-Results.csv
|
|
│ │ ├── Pretest-SENATORS-TWEETS.csv
|
|
│ │ ├── profiles dataset profiles
|
|
│ │ │ ├── AllTweets.html
|
|
│ │ │ └── CovTweets.html
|
|
│ │ ├── SenatorsTweets-Final.csv
|
|
│ │ ├── SenatorsTweets-OnlyCov.csv
|
|
│ │ ├── SenatorsTweets-train-CovClassification.csv
|
|
│ │ ├── SenatorsTweets-train-CovClassificationTRAIN.csv
|
|
│ │ ├── SenatorsTweets-train-CovClassification.tsv
|
|
│ │ ├── SenatorsTweets-train-FakeClassification.csv
|
|
│ │ ├── SenatorsTweets-train-FakeClassificationTRAIN.csv
|
|
│ │ ├── SenatorsTweets-train-FakeClassification.tsv
|
|
│ │ ├── SenatorsTweets-Training.csv
|
|
│ │ ├── SenatorsTweets-Training_WORKING-COPY.csv
|
|
│ │ ├── topClass-PRETEST-Prep.csv
|
|
│ │ ├── topClass-PRETEST-Results.csv
|
|
│ │ ├── Tweets-All-slices.zip
|
|
│ │ ├── Tweets-Classified-Fake-Prep.csv
|
|
│ │ ├── Tweets-Classified-Fake-Results.csv
|
|
│ │ ├── Tweets-Classified-Prep.csv
|
|
│ │ ├── Tweets-Classified-Topic-Prep.csv
|
|
│ │ ├── Tweets-Classified-Topic-Results.csv
|
|
│ │ └── Tweets-Stub.csv
|
|
├── funs
|
|
│ ├── CleanTweets.py 2023-01-03T00:00:00Z multiple functions to clean tweet contents for NLN-processing
|
|
│ ├── ClearDupes.py function for deletion of duplicate keywords
|
|
│ ├── __init__.py
|
|
│ ├── Scrape.py scraper functions to be used for multiprocessing
|
|
│ └── TimeSlice.py time slice script to slice the time span in 24 slices, speeds up scraping through multiprocessing
|
|
├── log logs of the scraping process
|
|
│ ├── log_2023-06-23_21-06-10_err.log
|
|
│ ├── log_2023-06-23_21-06-10.log
|
|
│ └── log_2023-06-23_21-06-10_missing.log
|
|
├── models
|
|
│ ├── CovClass Covid tweet classification model
|
|
│ │ └── 2023-08-15_05-56-50
|
|
│ │ ├── 2023-08-15_05-56-50.csv training output
|
|
│ │ ├── config.json
|
|
│ │ ├── pytorch_model.bin
|
|
│ │ ├── special_tokens_map.json
|
|
│ │ ├── tokenizer_config.json
|
|
│ │ ├── tokenizer.json
|
|
│ │ └── vocab.txt
|
|
│ └── FakeClass Fake tweet classification model
|
|
│ └── 2023-08-15_14-35-43
|
|
│ ├── 2023-08-15_14-35-43.csv training output
|
|
│ ├── config.json
|
|
│ ├── pytorch_model.bin
|
|
│ ├── special_tokens_map.json
|
|
│ ├── tokenizer_config.json
|
|
│ ├── tokenizer.json
|
|
│ └── vocab.txt
|
|
├── snscrape contains snscrape 0.6.2.20230321+ git repo
|
|
├── ClassificationFake.py classifies tweets as fake or non-fake, saves:
|
|
│ Tweets-Classified-Fake-Prep.csv - prepared training dataset
|
|
│ Tweets-Classified-Fake-Results.csv - Tweets-Classified-Topic-Results.csv with cov classification results
|
|
├── ClassificationTopic.py classifies tweet topic, saves:
|
|
│ Tweets-Classified-Topic-Prep.csv - prepared training dataset
|
|
│ Tweets-Classified-Topic-Results.csv - SenatorsTweets-OnlyCov.csv with cov classification results
|
|
├── cleanTweets.py Curates keywordlists
|
|
│ Merges senator and tweet datasets
|
|
│ Creates multiple datasets:
|
|
│ SenatorsTweets-Final.csv - all tweets with keyword columns
|
|
│ SenatorsTweets-OnlyCov.csv - only covid tweets, filtered by keywordlist
|
|
│ SenatorsTweets-Training.csv - training dataset, containing ~1800 randomly selected tweets from SenatorsTweets-OnlyCov.csv
|
|
├── collect.py scrapes tweets, saves to ALL-SENATORS-TWEETS.csv
|
|
├── collectSenData.py scrapes senator account data, saves to ALL-SENATORS.csv
|
|
├── createGraphs.py creates wordcloud & timeline graphs
|
|
├── preTestClassification.py pretest script that uses bvrau/covid-twitter-bert-v2-struth to analyze 100 preclassified tweets
|
|
├── profiler.py creates dataset profiles
|
|
├── README.md readme
|
|
├── trainFake.py training script for the fake tweet classification model
|
|
└── trainTopic.py training script for the tweet topic classification model
|
|
``` |